West Virginia Council for Community & Technical College Education

AGENDA

October 20, 2016
9:30 am

Members

Clarence Pennington, Chair
Robert Brown, Vice Chair
William Baker
Bruce Berry
Keith Burdette

Christina Cameron
Kathy D'Antoni
Steve Roberts
John Sorrenti

Sarah Armstrong Tucker, Chancellor
Main Hall on BridgeValley Community and Technical College's South Charleston Campus

2001 Union Carbide Dr. South Charleston, WV 25303

Arriving from the EAST on I-64 (after leaving Charleston):
1. At I-64 exit 55, take Ramp (RIGHT) toward Kanawha Turnpike
2. Stay on Kanawha Turnpike [CR-12]
3. After about 0.5 mile, turn LEFT into the West Virginia Regional Technology Park (3300 Kanawha Turnpike)

Arriving from the WEST on I-64 (approaching Charleston):
1. At I-64 exit 54, turn RIGHT onto Ramp towards US-60 / MacCorkle Ave / South Charleston
2. Keep RIGHT to stay on Ramp towards US-60
3. Bear RIGHT (East) onto US-60 [MacCorkle Ave SW], then immediately turn RIGHT (South-East) onto SR-601 [Jefferson Rd]
4. After 0.5 mile, bear left at the traffic light onto Kanawha Turnpike [CR-12]
5. Continue straight (0.1 mile) through the next traffic light on Kanawha Turnpike
6. After about 0.5 mile, turn RIGHT into the West Virginia Regional Technology Park (3300 Kanawha Turnpike)
I. Call to Order

II. Chairman’s Report

III. Advisory Council of Students

IV. Advisory Council of Faculty Annual Presentation

V. Approval of Minutes
 A. *August 18, 2016, Meeting Minutes...pg 5

VI. Academic Affairs
 A. *Program Review for 2015-2016 ..pg 8
 B. *Post-audit Review of Occupational Programs ..pg 13
 C. Follow-up Program Review at BridgeValley Community and Technical College, New River Community and Technical College, Pierpont Community and Technical College, and WV Northern Community College ..pg 29
 D. *Issue Notice to Revoke Authorization for ITT Technical Institute to Confer Degrees in West Virginia ...pg 31
 E. Update on Status of Accrediting Council for Independent Colleges and Schools (ACICS)..pg 32

VII. Finance and Facilities
 A. *Ten-year Campus Development Plan at New River Community and Technical College...pg 42
VIII. General

A. Statewide College Access and Success Initiatives Report

IX. Possible Executive Session Under the Authority of WV Code §6-9A-4 for the Following:

A. North Central Advanced Technology Center

B. *Chancellor Contract Renewal

X. Additional Board Action and Comments

XI. Next Meeting

Location: Advanced Technology Center, South Central West Virginia
 South Charleston, WV
Date: December 8, 2016
Time: 9:30 a.m.

XII. Adjournment
A meeting of the West Virginia Council for Community and Technical College Education was held on August 18, 2016, beginning at 10:00 a.m. at the Advanced Technology Center, South Central West Virginia in South Charleston, West Virginia. Council members present were: William Baker, Robert Brown, Christina Cameron, Kathy D’Antoni, Steve Roberts and John Sorrenti. Joining by conference call was Clarence Pennington. Council members absent were: Bruce Berry and Keith Burdette. Also in attendance were Chancellor Sarah Tucker, Council staff, community and technical college presidents, faculty, staff, students and guests.

Call to Order

Vice Chairman Brown called the meeting to order and noted that a quorum was present.

1. Approval of Minutes

Mr. Sorrenti moved the adoption of minutes from the July 15, 2016, and July 27, 2016, meetings of the West Virginia Council for Community and Technical College Education.

Mr. Baker seconded the motion. Motion carried.

2. Revisions to Series 21, *Freshman Assessment and Placement Standards*

Mr. Baker moved the adoption of the following resolution:

RESOLVED, That the West Virginia Council for Community and Technical College Education approves revisions to Series 21, *Freshman Assessment and Placement Standards*, to be filed with the Secretary of State for the thirty-day public comment period, and if no substantive comments are received that the Council extends its final approval.

Mr. Sorrenti seconded the motion, motion carried.
General

3. **Technical Program Development Grant Awards**

 Mr. Roberts moved the adoption of the following resolution:

 RESOLVED, That the West Virginia Council for Community and Technical College Education approves the Technical Program Development grant awards as proposed.

 Ms. Cameron seconded the motion, motion carried.

4. **Institutional Compacts for Planning Period 2016-2020**

 Representatives from each of the community and technical colleges presented to the Council, highlighting one compact strategy they deem very important to the mission of their respective institutions.

 Mr. Roberts moved the adoption of the following resolution:

 RESOLVED, That the West Virginia Council for Community and Technical College Education approves the institutional compacts for the planning period of 2016 - 2020.

 Ms. Cameron seconded the motion, motion carried.

5. **FY 2018 Budgetary Submission Request**

 Mr. Roberts moved the adoption of the following resolution:

 RESOLVED, That the West Virginia Council for Community and Technical College Education approves the fiscal year 2018 budget submission request as presented.

 Ms. Cameron seconded the motion, motion carried.

Executive Session

Ms. Cameron moved that the Council go into Executive Session in accordance with WV Code §6-9A-4 to discuss personnel matters. Mr. Roberts seconded the motion. Motion carried.

Following Executive Session, the Council reconvened in open session and the following action was taken:
6. **Presidential Compensation at Mountwest Community and Technical College**

Ms. Cameron moved the adoption of the following resolution:

RESOLVED, That the West Virginia Council for Community and Technical College Education approves a contract extension for Dr. Keith Cotroneo as President of Mountwest Community and Technical College as proposed by the institutional board of governors.

Mr. Baker seconded the motion, motion carried.

7. **Presidential Compensation at West Virginia University at Parkersburg**

Ms. Cameron moved the adoption of the following resolution:

RESOLVED, That the West Virginia Council for Community and Technical College Education delegates authority to Chancellor Sarah Tucker to meet with the Chairman and/or Board of Governors at West Virginia University at Parkersburg for the purpose of renegotiating contract terms for President Lamkin on behalf of the Council.

Mr. Baker seconded the motion, motion carried.

Adjournment

There being no further business the meeting was adjourned.

Next Meeting

- **Location:** BridgeValley Community and Technical College
 South Charleston, WV
- **Date:** Thursday, October 20, 2016
- **Time:** 9:30 a.m.

Clarence Pennington, Chairman

William Baker, Secretary
ITEM: Program Review for 2015-2016

RECOMMENDED RESOLUTION: Resolved, That the West Virginia Council for Community and Technical College Education accepts the program review actions of the institutional governing boards.

Further Resolved, The Council requests follow-up reports by August 2017 for all programs that exceed the number of hours required for graduation as recommended in Series 11.

STAFF MEMBER: Mark Stotler

BACKGROUND:

In accordance with West Virginia Code and Council Policy Series 10, *Policy Regarding Program Review*, the institutions through their respective governing boards conducted academic program reviews for 2015-2016 and submitted summary reports and actions taken. A summary of the reports is presented in the following table as information to the Council. It should be noted that the recommended actions are those of the institutional governing board.

The community colleges reviewed a total of 27 programs during the program review cycle and took the following actions:

- Twelve programs were recommended for continuation at the current level of activity.
- Nine programs were recommended for continuation at the current level of activity with corrective action or follow-up.
- Six programs were recommended for termination
 - AAS – Cosmetology – New River
 - CAS/AAS – Horticulture – New River
Three institutions did not provide program review summaries this year – Mountwest Community and Technical College, West Virginia Northern Community College, and West Virginia University at Parkersburg. Officials at WVU at Parkersburg and Mountwest are reviewing the situation on their campuses to determine if 1) reviews were done but not submitted or 2) any programs were scheduled for review during this year of the five-year cycle. If reviews were completed, they will be submitted for review at the Council’s December meeting. Officials at WV Northern indicated that there were no programs scheduled for reviews in this year of the five-year cycle.

A recent legislative audit raised questions regarding the monitoring and adherence to the requirement that all programs must be reviewed on a five year cycle. Council staff will undertake a review of this issue and report back at the next Council meeting.

Most reports included a plan for program improvement. For all of the reviews from New River, the plan for improvement was noted in the Board of Governor’s recommendation. The reasons for corrective action or follow-up were diverse. Items that generated the need for greatest attention included:

- The need to increase enrollment
- Graduate tracking for purposes of attaining information on employment, exam pass rates, and certifications
- Increasing graduation completion rates

The program review process has been utilized to monitor with Council goals to reduce the hours for graduation. With the exception of one program, all programs this year meet Council goals of 60 hours for associate degree and 30 hours for one year certificate programs. The Physical Therapy Assistant program will be asked to address whether accreditation mandates will allow for any reduction in hours.
<table>
<thead>
<tr>
<th>Institution</th>
<th>Program</th>
<th>Institutional Recommendation</th>
<th>Total Number of Graduates Last five years</th>
<th>Graduation Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Ridge Community & Technical College</td>
<td>C.A.S. Business and Technology</td>
<td>Continue at the current level of activity</td>
<td>249</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Many students secure the degree en route to completing associate programs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.A.S./A.A.S. Medical Assisting</td>
<td>Continue at the current level of activity</td>
<td>CAS-106</td>
<td>CAS-30</td>
</tr>
<tr>
<td></td>
<td>The first time pass rate on the National Registered Medical Assistant exam is 92%. Overwhelming feedback from students, externship sites, and employers is positive</td>
<td></td>
<td>AAS-106</td>
<td>AAS-60</td>
</tr>
<tr>
<td></td>
<td>C.A.S./A.A.S. Electronic Distribution</td>
<td>Continue at the current level of activity</td>
<td>CAS-27</td>
<td>CAS-30</td>
</tr>
<tr>
<td></td>
<td>Engineering Technology</td>
<td></td>
<td>AAS-14</td>
<td>AAS-60</td>
</tr>
<tr>
<td></td>
<td>A plan for program improvement was developed following meetings with the Advisory Committee and a special Academic Task Force. The plan emphasizes student completion and ensures students are provided with a clear pathway through curriculum remapping, changes in general education and increased online offerings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BridgeValley Community & Technical College</td>
<td>C.A.S. Emergency Medical Technician</td>
<td>Continue with corrective action</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>The program has been asked to submit a one-year follow-up on: 1) the success of curriculum revisions implemented to meet accreditation standards, and 2) efforts to increase enrollment to support sustainability.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.A.S. Process Technology</td>
<td>Continue at the current level of activity</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Based on input from the Advisory Committee and students, the program has acquired additional equipment to provide greater hands on experience.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern WV Community & Technical College</td>
<td>C.A.S. Technical Studies</td>
<td>Continue at the current level of activity</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Enrollment and graduate numbers have improved since the previous review cycle; however, the college will continue to explore alternatives for improving enrollment by building parallel certificate tracks with existing A.A.S. Technical Studies programming.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.A.S. Technical Studies</td>
<td>Continue at the current level of activity</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Due to low graduate rates, a program improvement plan includes a transcript analysis of all majors to determine student progress through transitional studies into college level courses and impediments to course and program completion. The results will determine any interventions that are needed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.A.S. Occupational Development</td>
<td>Continue at the current level of activity</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Since the last review, the program has experienced a significant enrollment decrease (91 to 31). The graduation rate has improved. The college will revitalize recruitment activities by contracting apprenticeship training programs to review current status of existing MOAs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New River Community & Technical College</td>
<td>A.A.S. Cosmetology</td>
<td>Program terminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The college will continue to offer a C.A.S. in Esthetics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.A.S./A.A.S. Horticulture</td>
<td>Program terminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.A.S. Agriculture</td>
<td>Program terminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.A.S. Agriculture</td>
<td>Program terminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.A.S. Physical Therapy Assistant</td>
<td>Continue with corrective action</td>
<td>19</td>
<td>71</td>
</tr>
<tr>
<td>Institution</td>
<td>Program</td>
<td>Institutional Recommendation</td>
<td>Total Number of Graduates Last five years</td>
<td>Graduation Hours</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| **New River Community &
Technical College (cont’d)** | C.A.S. Automotive Maintenance and Light Repair | Continue with corrective action | AAS-2 CAS-30 | AAS-60 |
| | A.A.S. Automotive Service Technology | | | |
| | The program maintains accreditation with the scheduled visit in Spring 2017. The program has been charged with: 1) designing tracking systems for employment and rates of licensure exam pass rates and 2) implementing corrective actions for areas of concern cited by the accreditation body. |
| | C.A.S./A.A.S. Industrial Technology | Continue with corrective action | 4 CAS-30 AAS-60 | |
| | A plan for improvement includes the following elements: 1) implement a plan to increase enrollment and graduates, 2) limit implementation of accelerated format to a pilot until comparative data can be reviewed, 3) develop graduate tracking, 4) encourage awarding of CAS, and 5) promote statewide articulation/transfer agreements. |
| | C.A.S. Electrical Distribution Engineering Technology | Continue with corrective action | 0 30 | |
| | A plan for improvement includes the following elements: 1) design a tracking system for employment and industry certifications, 2) enhance completion by placing general education courses up front, and 3) implement ASSC based completion of the 900 clock hour activities. NOTE: This program is not recognized on the statewide inventory. |
| **Pierpont Community &
Technical College** | A.A.S. Criminal Justice | Continue at the current level of activity | 86 60 | |
| | The program supports a crime house and offers courses in four counties – Lewis, Monongalia, Harrison, and Mason. A 2+2 arrangement is being pursued with Alderson Broaddus. | | | |
| | A.A.S. Food Service Management | Continue at the current level of activity | 111 60 | |
| | The program is accredited and offers four specialization – Culinary Arts, Dietary Management, Pastry and Baking, and Resort and Hotel Management. Enrollment has been declining, but graduate numbers have held constant. |
| | A.A.S. American Sign Language/Interpreter Education | Continue at the current level of activity | 20 60 | |
| | The program is meeting an increasing demand for qualified interpreters. Since the last review, the program has acquired a dedicated lab with updated materials that are similar to those used in the Educational Interpreter Performance Assessment. |
| | A.A.S. Homeland Security | Program recommended for termination | | |
| **Southern West Virginia Community &
Technical College** | A.A./A.S. (University Transfer Program) | Continue with corrective action | 234 60 | |
<p>| | A vast majority of graduates complete the AA degree option. Corrective actions recommended include developing a comprehensive assessment plan that includes a review of program goals and identification of appropriate skills assessments; develop an advisory committee; automating the graduate survey process, and revising AS degree. |</p>
<table>
<thead>
<tr>
<th>Institution</th>
<th>Program</th>
<th>Institutional Recommendation</th>
<th>Total Number of Graduates Last five years</th>
<th>Graduation Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern West Virginia Community & Technical College (cont'd)</td>
<td>A.A.S. Mine Management</td>
<td>Program recommended for termination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WV Council for Community and Technical College Education
Meeting of October 20, 2016

ITEM: Post-audit Review of Occupational Programs

INSTITUTIONS: Blue Ridge Community and Technical College, New River Community and Technical College, Pierpont Community and Technical College, Southern West Virginia Community and Technical College, and West Virginia University at Parkersburg

RECOMMENDED RESOLUTION: Resolved, That the West Virginia Council for Community and Technical College Education receives post-audit and follow-up reports for occupational programs at Blue Ridge Community and Technical College, New River Community and Technical College, Pierpont Community and Technical College, Southern West Virginia Community and Technical College, and West Virginia University at Parkersburg and recommends that the programs be subject to the recommended actions as noted.

STAFF MEMBER: Mark Stotler

BACKGROUND:

Series 11 of the Council for Community and Technical College Education rules, Degree Designation, General Education Requirements, New Program Approval, and Discontinuance of Existing Programs, includes the following provisions:

- New occupational programs at community and technical colleges may be implemented without approval by the Council.
- Three years after the date of implementation of the occupational program, the Council will conduct a post-audit review of the program.
- After completion of the post-audit review, should there be a recommendation for discontinuance of the program, the Chancellor shall make such recommendation to the Council for action.

Ten full post-audits and six follow-up reports are provided for Council review. In addition, it should be noted that additional post-audit reports were received and returned for revisions.
The table below summarizes program actions since community colleges were given the authority to implement programs without prior approval from the Council.

<table>
<thead>
<tr>
<th>Institution</th>
<th>Total Programs</th>
<th>Audits Received</th>
<th>Terminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Ridge CTC</td>
<td>63</td>
<td>46</td>
<td>10</td>
</tr>
<tr>
<td>BridgeValley CTC</td>
<td>81</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>Eastern WV CTC</td>
<td>25</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>Mountwest CTC</td>
<td>41</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>New River CTC</td>
<td>39</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Pierpont CTC</td>
<td>23</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Southern WV CTC</td>
<td>29</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>West Virginia Northern CC</td>
<td>20</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>WVU-P</td>
<td>48</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>369</td>
<td>198</td>
<td>117</td>
</tr>
</tbody>
</table>

The post-audit reports are designed to discern if the programs are academically sound, viable and addressing documented needs. The post-audits and follow-up reports with accompanying recommendations are summarized below.
CAS Bookkeeping

Goals/Objectives: The program provides students with the necessary knowledge and skills to assist accountants. Graduates are typically known as accounting technicians, accounting clerks or bookkeepers and perform such tasks as recording transactions, preparing customer invoices, entering customer payments, entering vendor bills and preparing vendor checks. While an accounting degree is not required for employment as an accounting technician, it is often desirable and can make the student more employable.

Curriculum/Mode of Delivery: Courses are delivered through a variety of modes, including traditional lecture, hybrid and distance learning options. Course are rotated in delivery methods each semester to ensure offerings benefit a diverse student population. The program is 30 credit hours in length and requires nine hours of general education including communications, math, and information literacy.

Enrollment/Graduates: Most students enroll in the AAS Accounting program. The certificate can be earned while they work toward the AAS degree. In 2015-16 four students were identified as being enrolled in the Bookkeeping program. The program produced its first graduate in May 2016. An additional four graduates are anticipated in the next graduation cycle. A voluntary survey of employment with the college graduates has provided limited results.

Assessment: There is strong evidence that the program is an active participant in the college assessment program. Assessment results are reviewed each year to determine the effectiveness of the program in achieving stated learning goals. In addition, student performance objectives have been developed for each course. Two courses serve as the means for assessing the Bookkeeping program goals: QuickBooks Accounting and Accounting Practicum. The Intuit QuickBooks Certification Exam tests for a comprehensive working knowledge of QuickBooks and basic accounting principles.

Faculty: The program utilizes one full-time faculty member who serves as program coordinator. Additional assistance is provided by three adjunct lecturers. All faculty have a master’s level education in business. Two have attained the national credential as a Certified Public Accountant. The full-time faculty member teaches 50 percent of the program’s semester offerings.

Advisory committee: The program is served by an Advisory Committee. The committee meets annually to discuss program requirements, potential internship and employment positions, and suggestions for new coursework. The committee also reviews the program assessments. They ensure that the courses are teaching essential skills.
Financial: Adjunct salaries are the only expenditures identified. For the 2015-2016 year, the audit indicates $11,370 was spent on adjunct salaries. Institutional funds and student fees provided the necessary support.

Accreditation: No accreditation is available.

Recommendation/comments: It is recommended that the program be continued.

CAS Computer Application Specialist

Goals/Objectives: The purpose of this program is to develop technical expertise in computer technology and its applications. Completion of the program allows graduates to pursue entry-level employment in a variety of business, government, educational and IT settings. The program provides AAS students with a milestone opportunity to complete selected courses which verify a subset of their technical knowledge and skills.

Curriculum/Mode of Delivery: Courses are delivered in live, online and blended settings. Live courses are conducted in computer lab settings to provide hands-on experiences. Required courses are offered on a rotating schedule each fall and spring. Students are required to complete a field experience courses which affords them the opportunity to get on-the-job, hands-on experience before graduation. The program is 30 credit hours in length and requires three hours of required communication courses and three hours of math.

Enrollment/Graduates: Program enrollment is low as most students are pursuing the AAS degree. Six certificates have been awarded. There has been no tracking of employment for CAS graduates. The completion rate has been relatively low due to the lack of student enrollment. Effective student advisement would ensure that students complete courses that meet their restricted elective objectives but serve to meet their certificate requirements at the same time.

Assessment: Performance in the following courses provides the basis for program assessment: 1) MS Word, 2) Excel Complete, and 3) Practicum. Successful completion of Word is a requirement for graduation. Mastery of Excel must be demonstrated in a capstone project. Finally, practicum students must successfully pass the IC3 industry exam which confirms that students have the foundation of knowledge they need to succeed in environments that require the use of computers and the internet.

Faculty: The program utilizes a full-time program coordinator, a nine-month instructor and six adjunct instructors to deliver the course offerings. The same faculty also teach within the AAS program and other IT-related courses. Most faculty members have earned industry wide certifications in computer software applications and/or computer proficiency.

Advisory committee: The program is served by a Computer Applications Advisory Committee. Advisory committee meetings are held each fall and spring.
semesters to address the concerns of all programs within the Business and Technology division. The CAS Coordinator is looking at the possibility of creating a new CAS Advisory Board to focus entirely on the computer applications specialist programs.

Financial: There are no added expenses to offering the CAS degree. Some courses such as the Blackboard course have technology fees. The audit identified a need for additional adjunct faculty for the CAS program which would be covered by the institutional funds.

Accreditation: No accreditation is available.

Recommendation/comments: It is recommended that the program be continued.

CAS Early Childhood Education

Goals/Objectives: The program prepares individuals to work with children from infancy through age eight in diverse learning environments. Employment opportunities include preschools, childcare centers, and family childcare. One of the program objectives is to meet the requirements and need for West Virginia Early Childhood Classroom Assistant Teacher Authorization as outlined in West Virginia code. Students can earn NCRC Career Certification (National Career Readiness Certification) to improve employability.

Curriculum/Mode of Delivery: The program can be taken part-time or full-time and is designed for students who already work full-time. Classes are offered in the late afternoon and evenings. Six of the courses in the curriculum are verified to meet community program requirements for permanent authorization by the West Virginia Department of Education. All courses are offered in lecture mode. Two classes are available online. The program is 30 credit hours in length. The post-audit report identified 24 hours of early childhood courses. The college website indicated the curriculum also contained three hours of required communication courses and three hours of math.

Enrollment/Graduates: Most students enrolled are already employed with local child care centers or self-employed. The initial year of implementation saw an enrollment of four students. In the latest year of reporting, 12 students were enrolled. The program had five graduates in the second year (2015-2016) according to the post-audit report. Specific information regarding certificate graduates is limited. The report emphasized that most students are already employed.

Assessment: A recent decision was made to use Workkeys and the NCRC certificate as the primary assessment tools. Testing started this fall and is expected to improve assessment of student workforce abilities. Other measures of evaluating success in achieving goals include: 1) percentage of students who earn a B or better in all ECED coursework, 2) percentage of students who increase
STARS pathway levels, and 3) employment success. While assessment data is not available at this time, the college has utilized information received at student advisement meetings to seek ways clarify the difference between Early Childhood Education and the Elementary Education program.

Faculty: The department associate dean serves as the Program Coordinator. All EDEC courses are taught by adjunct faculty. Faculty data sheets were provided for three adjuncts all of whom hold a master’s degree in an appropriate field.

Advisory committee: The program is served by an Advisory Committee reviews and suggests curriculum revisions. They have been widely consulted for textbooks and equipment. In addition, the committee has assisted with recent legislative updates to early childhood regulations and the needs of the early childhood employers.

Financial: Adjunct salaries are the only expenditures identified. The audit indicated $19,800 was spent on adjunct salaries. Institutional funds and student fees provide the necessary support.

Accreditation: No accreditation is available.

Recommendation/comments: It is recommended that the program be continued. The institution is encouraged to share how assessment results are being utilized when the program comes up for its normal program review.

New River Community and Technical College

AAS Administrative Office Technology

Goals/Objectives: The mission of the program is to prepare graduates in administrative support or general office positions as needed for business, industry, government and the professions. Students obtain an understanding of office procedures, accounting, records management, human relations, basic management principles and the place of business and industry in the American economic system.

Curriculum/Mode of Delivery: The curriculum consists of 60 hours including nine hours in English and Speech and three hours in math. Students take courses preparing them for the industry recognized certifications in Microsoft Office Specialist including Word, Excel, Access, PowerPoint, Publisher, and Outlook. Courses are delivered in a variety of modes including traditional, interactive video network and virtual. Courses in the curriculum are utilized by students enrolled in other business and office related programs.
Enrollment/Graduates: The report identified 17 majors in 2013-14. The program produced 13 graduates in the first three years.

Assessment: Students are assessed in the courses through written quizzes, written exams, student papers, individual and group projects, simulation, case studies, timed writing, computer application projects, and other specialized projects. Final summative assessment for program goals and objectives is accomplished through portfolio development in BUSN 272 Career and Professional Development. Student success on Microsoft certifications provides additional feedback. A curriculum map identifies where program goals and objectives are reinforced in each class. Assessment has been used to both improve the program and to revise specific courses.

Faculty: The program is served by three full-time faculty members. In addition, the program is served by two to five adjunct faculty each year. All full-time faculty members hold a master’s degree and two have completed doctoral coursework.

Advisory committee: The program is served by an Advisory Committee that meets each semester. The committee has been active in providing input into course and program objectives and goals. Advisory committee members have verified the use of the types of software and hardware, simulations experiences and teaching methods used in the program.

Financial: In the 2013-14 academic year the program had income of $30,660 which came from tuition and fees. Expenditures totaled $135,040. Additional funding sources to support the program were not identified.

Accreditation: There is no programmatic accreditation for this program.

Recommendation/comments: It is recommended that the program be continued, but that a follow-up report be provided by February 1, 2017 regarding institutional plans for sustaining the program financially.

AAS Physical Therapy Assistant

Goals/Objectives: The mission of the program is to prepare graduates to be licensed as physical therapy assistants. The program prepares PTA students to work in a variety of physical therapy settings including: clinics, hospitals, medical offices, and home health care agencies.

Curriculum/Mode of Delivery: Students must complete or be enrolled in the program’s 30 credit hours of prerequisite courses when applying to the program. Three hours of math and six hours of English are included in the prerequisites. The curriculum including the prerequisites totals 71 hours that can be completed in five semesters. A similar program in the system had documentation from the accreditation body stating the number of hours is required to meet accreditation...
standards. A maximum of 20 students are admitted into the program each August. Applicants are required to complete a minimum of 40 volunteer hours in at least two physical therapy settings. Courses are delivered in traditional lecture and clinical classrooms. Completion of the program allows the graduate to sit for the national PTA licensure examination.

Enrollment/Graduates: Enrollment into the program is competitive and is limited to 20 students for each class. The program had full enrollment in the first two years. The first class produced 19 graduates for a completion rate of 95 percent. Graduate employment data is not yet available.

Assessment: The audit presented a comprehensive assessment plan that includes measurable goals, data collection methods, and action plans to address results. There is substantial evidence that shows assessment results are being used for program improvement.

Faculty: The program is served by two full-time faculty members. One serves as program coordinator while the other serves as clinical coordinator.

Advisory committee: The program is served by an Advisory Committee that meets each semester. The committee has been active in providing input into course and program objectives and goals.

Financial: The program was initially supported through a grant. In the 2014-15 academic year the program had income of $420,423 which came from tuition and fees (37.6 percent) and grant funds (62.4 percent). Expenditures totaled $403,728.

Accreditation: The program was accredited by the Commission on Accreditation in Physical Therapy Education in April 2015. The program was placed on probation and the accreditation expires June 30, 2017. A visit is scheduled for fall 2016.

Recommendation/comments: It is recommended that the program be continued, but that a follow-up report be provided by February 1, 2017 regarding the outcome of the accreditation visit.

Pierpont Community and Technical College

CAS Licensed Practical Nursing

Goals/Objectives: The mission of this program is to be responsive to the emerging technologies in the field of healthcare and the changing health care needs of individuals, families and communities. The goal is to prepare graduates
for successful completion of the National Council Licensure Examination for Practical Nurses.

Curriculum/Mode of Delivery: The program has been designed as a part-time five-semester certificate program. The hours and course design closely follow the West Virginia LPN board’s suggested curriculum design. This is a competitive program and applicants must take a pre-nursing entrance test TEAS (Test of Essential Academic Skills). In addition, students must meet math and English competencies and complete seven credit hours of prerequisite classes. Courses are delivered primarily in face to face setting in the classroom and clinical setting. Three courses are available online. After acceptance, the program is 42 credit hours in length.

Enrollment/Graduates: Students are admitted as a cohort with cohort sizes ranging from 11 to 16 students. The program reported 19 graduates. Graduates have been successful in finding employment in hospitals and community clinics/long term care. Nine of the initial 11 graduates have been successful in getting licensed.

Assessment: The program has a comprehensive assessment plan that includes six educational goals, seven graduate outcomes, and two resource outcomes. Each of the goals/outcomes are accompanied by identified measures, timelines and data collection methods. The report also provided a summary of assessment results and any modifications resulting from the assessment.

Faculty: The program utilizes one full-time faculty members and three adjunct instructors each semester. The adjuncts are utilized for all clinical face to face courses. To deliver the course offerings all faculty members hold degrees in nursing or nursing education.

Advisory Committee: The program is served by an Advisory Committee that meets twice a year. The committee has been utilized to assist in curriculum development and clinical practice. The committee was instrumental in the development of a preceptor program which has been integrated into the last semester of the LPN program.

Financial: The program has a labor budget of $62,783 for full-time faculty and $23,020 for adjunct faculty. State appropriation dollars and program fees are the source of support. The full-time faculty salary was originally supported through a $220,000 Technical Program Development Grant. The current operating budget is $7,330.
Accreditation: State accreditation is maintained with the West Virginia State Board of Examiners for Licensed Practical Nurses and is valid through October 2017.

Recommendation/comments: It is recommended that the program be continued.

Southern West Virginia Community and Technical College

CAS General Studies

Goals/Objectives: In June 2012, the Council approved a model curriculum for a CAS in General Studies program. Institutions that followed the model curriculum could implement the program without further approval. The program was designed to serve two populations:

- Students who are undecided on a major yet who are required by financial aid rules to declare a major. The program would allow students to satisfy core general education requirements.
- Individuals in the workforce who need skills in communication, problem solving, and teamwork.

While the CAS in General Studies is not an occupational program, a post-audit was requested to ensure that the program is aligned with the model approved by the Council and to see if the program is meeting stated objectives. The summary of the program is provided below.

Curriculum/Mode of Delivery: The curriculum of the program is fully embedded within each of the associate degrees offered by the University Transfer Program. In following the model curriculum, the program requires 30 hours for completion. The coursework provides skills necessary to be competitive and excel in the workplace including communication skills, critical thinking skills, knowledge of technology and a strong sense of personal and professional responsibility. The program is available at all campus locations, with some required courses delivered in hybrid or fully online formats.

Enrollment/Graduates: Since inception in fall 2013 through fall 2015, Southern has awarded 160 Certificate Degrees in General Studies. Six of the 160 students have been awarded only the certificate. The remaining students were awarded one or more additional degrees either in conjunction with or subsequent to the certificate.

Advisory committee: A priority for the Division Head of University Transfer is to form an advisory committee for the program. It was anticipated that an initial meeting of the proposed advisory committee would occur in April 2016.

Recommendation/comments: It is recommended that the program be continued.
Goals/Objectives: Child Development is a 3-step career ladder with degrees at the Certificate, Associate and Baccalaureate levels. The program is designed to prepare students for careers in a variety of settings and positions related to young children. Graduates may find employment with childcare centers, head start, WV Birth to Three, or as paraprofessionals in public schools.

Curriculum/Mode of Delivery: The CAS program curriculum consists of 31 credit hours while the Associate degree requires 60 hours. General education hours include appropriate courses in math and communications. A variety of delivery modes are utilized. Courses are taught online primarily with a rotation of face to face offerings each semester. General education and support courses are taught face to face and online each semester.

Enrollment/Graduates: In fall 2015, the CAS program enrolled 6 students while the AAS degree program enrolled 55 students. There is an overlap between the CAS program and the Paraprofessional Prek-12 Certificate which may pull some enrollment from the CAS program. There have been 10 CAS graduates and 18 AAS graduates. Employment data is not available. It was anticipated that a graduate survey would be developed and implemented beginning with fall 2015 graduates. Three of the 2015 AAS graduates enrolled in the BAS program in Childhood Development.

Assessment: A number or measures have been implemented to evaluate success in achieving goals including: 1) AAFCS PrePac Test in Early Childhood Education, 2) Professional Portfolio, 3) Practicum Evaluation, 4) Advanced Portfolio, and 5) Advance Practicum Evaluation. A review of the PrePac results for 2014-15 graduates showed that graduates are meeting competencies at a rate higher than the national average. While informal review of assessment data is ongoing, a cyclical process for programmatic review has been developed for implementation in 2015-16. Faculty will meet to review programmatic evaluation twice a year and make changes based on the results of the data. Program objectives have been mapped to specific courses.

Faculty: The program is currently without a full-time faculty member. The position was expected to be filled in January 2016. The post-audit report provided data on two adjunct faculty who hold degrees in Early Childhood Education.

Advisory committee: An advisory committee is being developed. It was anticipated that the first meeting would be held during spring 2016 and will meet annually.

Accreditation: Accreditation is available through the National Association for the Education of Young Children. Program faculty are interested in pursuing accreditation once funding to support the process is secured.

Recommendation/comments: It is recommended that the program be continued; however it was noted that a number of initiatives were in the process of being developed. A progress report is requested by October 2017. The report should address the following:

- The status of a formal process to review assessment results and how those result are being used for program improvements.
- The status of implementing the graduate survey and the results of the survey.
- The success of hiring a full-time faculty member.
- The identification of the resources needed to being the accreditation process and the timeline for seeking accreditation.
- The status of the Advisory Committee, including the number of meetings held and their contributions to program improvements.

CAS/AAS Legal Studies

Goals/Objectives: The primary goal of the Legal Studies program is to produce graduates with the knowledge, skills and abilities to exceed employer expectations in the paralegal and other legal-related fields. At WVU-P, students may pursue three degree in Legal Studies – CAS, AAS, and BAS.

Curriculum/Mode of Delivery: The CAS program is embedded into the AAS and provides an introduction to various areas of law and develops basic legal research and writing skills for use in various supporting positions within the legal field. The AAS is a continuation of the CAS and further prepares students for supporting positions within the legal field. Students will continue to gain experience and improve skills in various substantive areas of the law and in legal research and writing. The CAS program requires 30 hours of coursework while the AAS degree requires 60 hours. The curricula for both degree options include the necessary coursework to support communication skills. The curricula do not include a math course. Students are required to take Principles of Accounting or Advanced Micro Applications for Business. All courses are available in a traditional classroom setting. A limited number of courses are available in an online or hybrid format.

Enrollment/Graduates: Data for fall 2015 showed 41 students enrolled in the AAS program and five students in the CAS program. In the 2014-15 academic year there were four CAS graduates and six AAS graduates. Three of the CAS graduates continued into the AAS degree program at WVU-P. Four of the six AAS graduates are employed in the legal services field, one is employed in the legal field while pursuing the BAS option. The remaining two graduates are pursuing a bachelor’s degree in National Security at another institution.
Assessment: The assessment plan for both degree programs utilizes a standardized test based upon the NALA Certified Paralegal practice exam. The students are tested upon completion of the degree. Through the Internship course and the Legal Professional Development course, AAS students are evaluated by their off-campus internship supervisor and are assessed on a standardized portfolio project. Program outcomes have been developed and mapped to specific courses. The assessment results have been used for program improvement. Scores were low on legal research and writing outcomes. It was believed that this was due to a lack of stability of the program in the first two years. As a result of this finding, the full-time coordinator has begun to teach both of these courses.

Faculty: The program utilizes one full-time faculty member who serves as program coordinator and, in most semesters, two adjunct instructors. All faculty have a J.D. and experience in the practice of law in various roles.

Advisory committee: The program is served by an active Advisory Committee. The committee has met annually and has provided feedback about the need for flexibility and the need to focus on the skills of students in the areas of legal research and writing and professionalism.

Financial: Support for the program has come through student tuition and fees and a Technical Program Development Grant. Future resource requirements are anticipated to come primarily from tuition and fees. A total of $150,311 was spent between fall 2013 and June 2015. Faculty salaries are the primary expense averaging approximately $60,000.

Accreditation: At this time, there is a long-term plan to take steps toward accreditation through the ABA; however, the ability to become ABA accredited is restricted by the non-availability of a law library in the local area.

Recommendation/comments: It is recommended that the program be continued with a progress report due by February 1, 2017. The progress report should indicate how computational skills are addressed in the curriculum.

AAS 3D Modeling and Simulation Design

Goals/Objectives: The program is designed to prepare students for work in the field of drafting, engineering, simulation, architecture and graphic design. The primary goal of the program is that students will be able to design two and three-dimensional drawings using AutoCAD, Microstation, Inventor, Revit, and 3D Studio Max.

Curriculum/Mode of Delivery: The curriculum consists of 60 credit hours, including six hours in English/Communication and three hours in technical math. The curriculum includes a capstone course. Courses are delivered in a classroom lecture mode.
Enrollment/Graduates: The program has averaged 16 students in its first four years. The program has produced 20 graduates, including 16 over the past two years. No information was provided on student placement.

Assessment: The report does not present a formal assessment structure. Specific courses objectives are not identified. The narrative does cite a few assessment instruments that signal student success. During the capstone course students will complete the American Design Drafting Association Apprenticeship Mechanical Certification Test. The test measures the drafting content knowledge of students within the program and can be used to adjust courses within the program to meet certification requirements. Test results from November 2014 revealed that the average scores in two sections did not meet certification requirements. The program responded by incorporating more quiz questions that reflect the content contained in the test.

Faculty: The program utilizes one full-time instructor who holds a bachelor’s degree in technology education with expertise in engineering and drafting. Part-time faculty are not utilized at this time due to low enrollment numbers.

Advisory committee: The program is served by a six member advisory committee that assists in determining whether the program is meeting industry needs. The committee meets once each semester.

Financial: Funds dedicated for the program are only for faculty salary and benefits. This amounted to $44,818 in FY15. Operating costs come from the division budget as needed.

Accreditation: There is no accreditation option for this program.

Recommendation/comments: It is recommended that the program be continued.

POST-AUDIT FOLLOW-UP REPORTS

Blue Ridge Community and Technical College

AAS Accounting

Council request: Address efforts to increase the number of graduates and enhance graduate follow-up.

College response: The following actions are planned to increase the number of graduates:

- Offer more course elective options to accommodate students that encounter conflicts in scheduling classes each semester.
- Offer accounting courses at times that working students will be able to attend.
- Offer some courses out of sequence, or independent study, for students that are not in step with the accounting sequence of courses.
• Continue to advise each student of the best schedule sequence when registering for courses each semester.

Recommendation: Accept the follow-up report

CAS/AAS Mechatronics

Council request: Address the success of efforts to increase graduation rates.

College response: Students are employable after the first year of courses and often exit the program to accept employment. In 2015-2016 a new curriculum was launched. The new curriculum and course program map will make degree completion achievable in a two year period of time and increase graduation rates. A guided pathway chart has been developed and is distributed during student advisement. The two degree options produced 14 graduates in 2016.

Recommendation: Accept the follow-up report

West Virginia Northern Community College

AAS Mechatronics:

Council request: Address the lack of a program Advisory Committee.

College response: An Advisory Committee has been established with plans to meet in October 2016. A sector meeting involving the committee and other industry representatives is also planned.

Recommendation: Accept the follow-up report

West Virginia University at Parkersburg

CAS Electricity and Instrumentation

Council request: Address efforts to improve graduation numbers.

College response: Courses in this program along with the CAS in Residential/Commercial Electricity are required courses in the Multi-Craft Technology program and Electronics. All courses required for the certificate fold into the AAS program and a BAT program in Applied Technology. In spite of the career ladder opportunity, students have been deterred from applying to graduate with the CAS degree because of the following reasons; 1) employment does not require certificate or degree, 2) there is a high graduation fee ($65), and 3) goal is the associate degree. Plans are underway to determine if the program needs to be revamped or a new option should be provided and the program suspended.

Recommendation: Accept follow-up report.
CAS Chemical and Polymer Operator Technology

Council request: Provide data of future graduates including placement and indicate the involvement of the advisory committee.

College response: The program has been successful in producing graduates and reported 32 graduates in the follow-up report. The Advisory Committee is being reformed and will meet in the next few months.

Recommendation: Request additional follow-up report that addresses graduate placement and provides evidence of a functioning Advisory Committee. The follow-up should be submitted by March 15, 2017.

AAS Computer Science

Council request: Address 1) use of assessment results for program improvement, 2) necessity for the newly designed program, 3) evidence of placement, and 4) involvement of advisory committee.

College response: The program recently revised its Program Assessment Plan and streamlined the options for students to complete an external assessment exam. Data will be collected in the new assessment plan beginning in May 2015. Following 2-3 years of data collection, the faculty will be in a stronger position to use the assessment data to make recommendations for program changes.

Students who continue in the BAT degree may not be employed at the time they receive their AAS degree. So it is challenging to obtain reliable placement data. The college Outcomes Assessment Team is undertaking studies to include employers and graduates. The completion of these projects would yield additional information.

An Advisory Board to serve both the Computer Information Technology program and the Computer Science program has been revised and more frequent meetings are taking place.

Recommendation: Accept the follow-up report
ITEM: Follow-up Program Review Graduation Hours

INSTITUTION: BridgeValley Community and Technical College, New River Community and Technical College, Pierpont Community and Technical College, WV Northern Community College

RECOMMENDED RESOLUTION: Information Item

STAFF MEMBER: Mark Stotler

BACKGROUND:

At its meeting on October 22, 2015, the Council received a report on program review. As part of the Council’s goal to reduce program graduation hours, the Council requested follow-up reports for programs that exceed 30 hours for certificate programs and 60 hours for associate programs. The current status of these programs are summarized below.

<table>
<thead>
<tr>
<th>Institution</th>
<th>Program</th>
<th>Previous Hours</th>
<th>Current Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BridgeValley</td>
<td>A.A.S. Dental Hygiene</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>A.A.S. Respiratory Therapy</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>A.A.S. Veterinary Technology</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>C.A.S. Medical Insurance Billing & Coding</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>C.A.S. Practical Nursing</td>
<td>49</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>C.A.S. Paramedic</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>C.A.S. Machining Technology</td>
<td>32</td>
<td>33-34</td>
</tr>
<tr>
<td></td>
<td>C.A.S. Paraprofessional Education</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>A.A.S. Medical Assisting</td>
<td>65</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>A.S. Corrections</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>A.S. Law Enforcement</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>New River</td>
<td>A.A.S. Veterinary Technology</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>C.A.S. Emergency Medical Services</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>A.A.S. Emergency Medical Services</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Pierpont</td>
<td>C.A.S. Culinary Arts</td>
<td>32</td>
<td>32-33</td>
</tr>
</tbody>
</table>

Notes:
BridgeValley – The programs operate under mandates from their respective accrediting bodies. The programs will continue to review their curricula to determine if revisions can be made to reduce hours while satisfying accreditation standards.

Pierpont – No progress has been made in reducing the number of hours required for graduation. Program officials stated they need the additional hours to get their students prepared for end of program exams. Program officials have been asked to set up meetings this semester to address this issue. A curriculum proposal is anticipated from the Veterinary Technology program.

New River – The current hours for the certificate programs in Practical Nursing, Paramedic, and Machining Technology were taken from the current catalog. A progress report on efforts to reduce hours for these programs was not provided.
ITEM: Issue Notice to Revoke Authorization for ITT Technical Institute to Confer Degrees in West Virginia

INSTITUTION: ITT Technical Institute

RECOMMENDED RESOLUTION: Resolved, That the West Virginia Council for Community and Technical College Education issues notice to revoke the authorization for ITT to confer post-secondary degrees in the state of West Virginia.

STAFF MEMBER: Corley Dennison

BACKGROUND:

On September 6, 2016, ITT Technical Institute’s corporate offices closed all 137 of its nationwide campus locations including their facility in Huntington. The campuses were closed without warning leaving 40,000 students wondering about their future and their finances. In West Virginia approximately 140 students were affected although the number could be higher. Exact enrollment numbers cannot be obtained as all records are unavailable, all corporate assets are frozen, all employees are laid off, and all physical plant facilities are locked.

The sudden closure came less than a week after federal sanctions were imposed on ITT for questionable loan practices. The Securities and Exchange Commission was investigating ITT and, on August 30, 2016, the US Department of Education denied all new students enrolling in ITT access to federal Title IV money and doubled the minimum surety bond requirement.

Given that ITT is already out of business, the revocation of authorization to confer degrees is a formality that would prevent ITT from re-entering West Virginia without first receiving proper vetting from the Council staff. The revocation would also force ITT to return to initial authorization requirements under Series 35, Correspondence, Business, Occupational, and Trade Schools, prior to re-establishing a campus in West Virginia.

Under Series 35, Section 14, it is necessary to issue a notice to ITT of intent to revoke authorization. Failure by ITT to respond to Council staff inquiry within 10 days of the issuance of the notification results in loss of authorization to confer degrees in West Virginia. Should ITT officials wish to appeal revocation of authorization, the Chancellor would organize a formal hearing.
WV Council for Community and Technical College Education
Meeting of October 20, 2016

ITEM: Update on the Status of Accrediting Council for Independent Colleges and Schools

INSTITUTION: American National University, Laurel Business Institute, Mountain State College, Valley College, West Virginia Business College, and West Virginia Junior College

RECOMMENDED RESOLUTION: Information Item

STAFF MEMBER: Corley Dennison

BACKGROUND:

On September 22, 2016, the US Department of Education (USDOE), decertified the Accrediting Council for Independent Colleges and Schools as a recognized accrediting agency (Attachment A). Schools accredited by ACICS were given 18 months to find a new accrediting agency. ACICS has appealed the decision.

Under USDOE policy the appeal goes to the Secretary of Education, John King and there is no established timeline for the Secretary to rule on the appeal. Should the Secretary uphold the decertification, ACICS may appeal to the federal courts. It is likely there could be an extended period of uncertainty for students and employees of ACICS schools in West Virginia and across the nation. During the appeal process, students at ACICS institutions may still access Title IV financial aid funds.

Federal action has placed the solvency of ACICS in serious doubt. On October 11, 2016, presidents and/or representatives from all ACICS institutions in West Virginia were invited to a roundtable discussion with Chancellor Tucker to discuss the current situation. To ensure continuity for students, a memorandum (attached) was issued on October 11th requiring ACICS schools in West Virginia to seek a secondary accreditation from a recognized accrediting body as a condition for continued authorization. It should be noted that all West Virginia institutions are already seeking a second accreditor.

The Accrediting Council for Independent Colleges and Schools (ACICS) is 100 years old and accredits 245 colleges on 800 campuses with a combined enrollment of 800,000 students. Seven West Virginia schools on 13 campuses are accredited by ACICS:

American National (Parkersburg and Princeton), ITT (Huntington-now closed), Laurel Business Institute (Morgantown), Mountain State Business College (Parkersburg),
Valley College (Beckley, Princeton, Martinsburg), West Virginia Business College (Wheeling and Nutter Fort), and West Virginia Junior College (Bridgeport, Charleston and Morgantown). The combined enrollment in WV is approximately 3,000 students.

Mountain State Business College (MSBC) was issued a compliance warning letter from ACICS on April 10, 2016 for 10 concerns related to faculty evaluations, assessment and curricular rigor (Attachment B). MSBC had the opportunity to address the concerns in a revised self-study report to the accrediting agency. After the national ACICS meeting in August, MSBC was sent a letter stating, “The Council directed the institution to show-cause why its application for accreditation should not be denied or otherwise conditioned during the December 2016 review cycle.” MSBC must provide additional information to ACICS, including a contingency teach out plan, by November 1, 2016. MSBC currently enrolls 150 students.
MEMORANDUM

To: ACICS Accredited Institutions in West Virginia
From: Dr. Sarah Tucker, Chancellor
 West Virginia Community and Technical College System
Date: October 11, 2016
Re: Authorization to Confer Degrees in West Virginia with Respect to Current Federal Action Against ACICS

Series 35, Correspondence, Business, Occupational, and Trade Schools, (Title 135, Legislative Rule, Section 14, 14.2.1) states a loss of national or regional accreditation may be a condition for loss of authorization to confer a post-secondary degree in the state of West Virginia. Recent United States Department of Education (USDOE) actions to decertify the Accrediting Council for Independent Colleges and Schools (ACICS) has cast doubt on the viability of ACICS to continue as a recognized national accreditating body. ACICS has appealed the decision to decertify with the Secretary of Education. USDOE policy does not establish a timeline for the Secretary to rule on the appeal nor has USDOE established a clear timeline for a transition period should the appeal be denied. Therefore, during the appeal and transition process, the West Virginia Council for Community and Technical College Education shall consider the authorization to confer post-secondary degrees as valid provided these conditions are met by ACICS accredited schools in West Virginia:

- All ACICS institutions in West Virginia must remain in good standing with ACICS and with the USDOE during the appeals process. A change in an institution’s accreditation status with ACICS or a heightened cash monitoring alert or other notification from the USDOE could trigger a showcase for authorization.

- All ACICS institutions in West Virginia shall seek a second institutional accreditation from a national or regional accrediting agency certified by USDOE. Efforts to seek a second accreditation shall begin immediately.

- All ACICS institutions in West Virginia shall provide regular updates on the progress in seeking the second institutional accreditation. Beginning on November 1, 2016, reports are due to the Chancellor every 60 days until the accreditation process is fully approved by the appropriate governing body. Specific content and procedures for these reports to be provided at a later date.

This plan shall remain in place until further notice. Modifications may be made to the plan as it becomes necessary.
September 22, 2016

Roger J. Williams, Interim President
750 First Street, NE, Suite 980
Washington, DC 20002-4241
rjwilliams@acics.org

Dear Mr. Williams,

I am writing to inform you of my decision regarding the recognition of the Accrediting Council for Independent Colleges and Schools (ACICS, or the agency). Department of Education staff and the National Advisory Council on Institutional Quality and Integrity (NACIQI) have each made recommendations to me. These recommendations were made under Sections 114 and 496 of the Higher Education Act of 1965 (HEA), as amended, and pursuant to relevant statutory and regulatory provisions.

Both the Department staff and NACIQI recommended that I deny ACICS’s petition for recognition and terminate ACICS’s recognition as a nationally recognized accrediting agency.

As required, I considered the full record related to this matter—including ACICS’s petition for renewal, the final staff report from Department of Education staff, the transcript of the agency’s appearance before NACIQI on June 23, 2016, NACIQI’s recommendation, and the comments submitted under 34 C.F.R. §602.35 by both ACICS and Department staff after the NACIQI meeting.

Having reviewed the record before me, I concur with the recommendations of Department staff and NACIQI. Accordingly, I am terminating the Department’s recognition of ACICS as a nationally recognized accrediting agency.

ACICS was found to be in violation of numerous regulatory criteria. Department staff reviewed a large amount of information from a variety of sources, and in the final staff report identified 21 areas where ACICS was out of compliance with the applicable regulations. I agree that ACICS is out of compliance in these areas—specifically:

www.ed.gov
The Department of Education’s mission is to promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access.
Under the law, an accrediting agency that is out of compliance cannot have its recognition renewed. Agencies may, however, be given up to 12 months to come into compliance. The Department of Education staff report concluded that ACICS could not remedy many of the serious deficiencies identified and therefore come into full compliance within 12 months. During the NACIQI meeting, citing their judgment based on many years of experience, Department staff and multiple NACIQI committee members echoed the report’s conclusions, despite recognizing that ACICS could likely remedy some of the deficiencies in 12 months.

At the NACIQI meeting and in its comments submitted after the NACIQI meeting, ACICS argued that it will be able to comply with each of the regulatory criteria within 12 months. ACICS points to a number of recent actions the agency has taken to address areas of non-compliance. I acknowledge that the agency has made recent efforts to address some of the deficiencies identified—including by revising various policies and restructuring internal governance bodies. Further, I recognize that it is possible for ACICS to fix some of the 21 compliance problems within 12 months. But overall, I agree with Department staff and NACIQI that ACICS could not come into full compliance within 12 months.

These violations reveal fundamental problems with the agency’s functions as an accreditor. For example—and this list is not exhaustive—the staff report outlines major problems with: the rigor of the agency’s accreditation and preaccreditation standards and its application of those standards (34 C.F.R. §§ 602.16(a) and 602.17); its monitoring of the institutions that it accredits (34 C.F.R. §602.19(b)); and the enforcement of its own accrediting standards (34 C.F.R. §602.20).

ACICS’s track record does not inspire confidence that it can address all of the problems effectively. Many of the problems identified in the staff report are serious and long-standing. The agency still has not fully addressed issues originally identified in 2013, such as its verification of placement information from institutions. And most of the remedial efforts currently underway began in earnest just several months ago, despite having reason to take action long before that.
Finally, as made clear in 34 C.F.R. §§ 602.32(b) and 602.36(e), demonstrating compliance in this case requires more than just new policies that address the issues identified by Department staff; it requires evidence of effective application and implementation of those new policies, practices, and governance structures, which the agency simply cannot provide for all of these criteria within 12 months.

In sum, the evidence establishes that the recommendation of Department staff and NACIQI is reasonable and well-justified. I concur with that recommendation.

Pending any appeal to the Secretary under 34 C.F.R. §602.37, my decision to withdraw and terminate the Department’s recognition from ACICS is the final decision of the Department.

Sincerely,

Emma Vadehra
Chief of Staff
August 26, 2016

VIA E-MAIL AND UPS DELIVERY

Ms. Judith Sutton
Director
Mountain State College
Spring At 16th Street
Parkersburg, WV 26101

Dear Ms. Sutton:

Subject: Renewal of Accreditation Show-Cause Directive Letter

The Council reviewed your institution at its recent meeting, including the institution’s application for renewal of accreditation, the report for the on-site evaluation visit conducted in January 2016, and the institution’s multiple responses to the visit report. As a result of its review, the Council found the following based on the Accreditation Criteria:

1. There are incomplete retention and placement improvement plans in the Campus Effectiveness Plan (CEP) for programs that fall below standard (Sections 2-1-809, 3-1-111, and 3-1-512).

2. The CEP does not meet Council standards related to graduate and employer satisfaction (Section 3-1-111).

3. There is incomplete documentation that the campus evaluates the work of its faculty and staff members (Section 3-1-202(b)).

4. The institution has not demonstrated a process of careful recordkeeping due to numerous inaccuracies found during the on-site evaluation visit. Specifically, the institution categorized 13 students as completers of a program when they had not finished all the necessary requirements. In addition, the institution had multiple inconsistencies related to placement classifications. Through several responses to the Council, the institution has reclassified all of the students and graduates into the appropriate classification. However, due to the serious lapses in recordkeeping and reporting to ACICS, the institution has not evidenced that they have an understanding of the requirements, guidelines, or importance of submitting accurate information to its accreditor (Sections 3-1-303(a) and 3-1-203).
Council Action

Due to the systematic and recurring nature of the findings discovered during the institution’s on-site evaluation visit and the consistent inability of the institution to provide evidence to resolve these findings through multiple submissions, the Council directed the institution to show-cause why its application for accreditation should not be denied or otherwise conditioned during the December 2016 review cycle. The institution is required to review and follow the Council hearing procedures as detailed in Section 2-3-500 of the Accreditation Criteria and the “Schedule of Fees” listing on the ACICS website. The institution must provide the appropriate notification and fee within ten days of receipt of this notice.

In response to this action, the campus is directed to provide the following information no later than November 1, 2016. This information must be well organized and responsive to the Council’s requests:

1. Evidence that all programs that fall below Council standards include improvement plans in the CEP. Documentation must include retention improvement plans for the Paralegal, Dependency Disorders Technology, Higher Accounting Management, Administrative Assistant, and Computer Information Technology programs. These plans must include timelines for completion, specific personnel responsible for the outcomes, and evidence that the activities have been implemented and monitored. In addition, a CEP placement improvement plan for the Computer Information Technology program must be provided that includes timelines for completion, specific personnel responsible for the outcomes, and evidence that the activities have been implemented monitored.

2. Evidence that graduate and employer surveys are utilized to improve educational processes at the campus. Documentation must include an updated CEP that includes an explanation of how the data collected have been used to improve the educational processes at the campus. The institution must describe any changes made to the educational processes that were directly related to the collection and analysis of this data.

3. Evidence that the institution has a process in place to ensure faculty and staff evaluations are regularly administered to all employees. Documentation must include an updated schedule for faculty and staff evaluations including specific dates for the 2017 faculty and staff evaluations, along with the names of the individuals who will be conducting the evaluations.

4. Evidence that the institution is appropriately classifying students, in all cases, on the CAR. The institution must upload its submitted 2016 CAR along with documentation to verify all retention and placement classifications listed on the report. Documentation
must include student transcripts for each student listed on the CAR that match the
classification of graduate/completer, still enrolled, or withdrawal. In addition, the campus
must provide back-up documentation for each graduate classified as placed, which
includes a signed letter of employment or job description from the employer that
indicates the job responsibilities and positions of the graduate. For those students
classified as not available for placement, the institution must submit the necessary back-
up documentation as described in the 2016 Campus Accountability Report Guidelines
and Instructions.

Please submit eight hard copies of your response and one electronic copy via flash drive by the
date indicated above. Failure to provide all information requested by the Council may result in
the withdrawal of your institution’s accreditation.

Institutional Teach-Out Plan

Finally, in compliance with Section 2-3-230 of the Accreditation Criteria, the campus is directed
to submit a contingency teach-out plan to the Council office by **November 1, 2016**, which must include:

a. A listing of students with the student name; program of study; expected graduation date;
and status of unearned tuition, status of refunds due, and current account balance for each
student.

b. A listing of comparable programs offered at other institutions in case teach-out
agreements or transfer arrangements are needed for students to complete their programs
elsewhere.

c. A custodian for all permanent academic records in case of closure that includes contact
information for this individual or entity and the process by which students can obtain
their records.

d. A description of the financial resources available to ensure that students can complete
their programs or receive refunds if the institution does cease operations.

The Council is obligated to take adverse action against any institution that fails to come into
compliance with the Accreditation Criteria within established time frames without good cause.
Please consult the Introduction of Title II, Chapter 3 for additional information.
Ms. Judith Sutton
August 26, 2016
Page 4

Please contact Ms. Jan A. Chambers at jchambers@acics.org or (202) 336-6764 if you have any questions.

Sincerely,

Roger J. Williams
Interim President

c: Ms. Cathy Sheffield, Accreditation and State Liaison, U.S. Department of Education
 (aslrecordsmanager@ed.gov)
 Ms. Nancy Gifford, U.S. Department of Education, School
 Participation Team, Region III (nancy.paula.gifford@ed.gov)
 Dr. Corley Dennison, West Virginia Higher Education Department
 (Corey.dennison@wvhepc.edu)
ITEM: Ten-Year Campus Development Plan

INSTITUTION: New River Community and Technical College

RECOMMENDED RESOLUTION:

Resolved, That the West Virginia Council for Community and Technical College Education (Council) approves New River Community and Technical College’s ten-year (2016-2026) Campus Development Plan with the exceptions stated in the resolutions that follow;

Further Resolved, That future property acquisitions shall be approved by the Council and be supported by clearly defined programmatic needs; and

Further Resolved, That Council staff’s recommendations as indicated in the agenda item be implemented by New River Community and Technical College as soon as possible and that staff is directed to work with New River to implement these recommendations.

STAFF MEMBER: Richard Donovan

BACKGROUND:

New River Community and Technical College engaged ZMM Architects & Engineers and Bullock Smith Partners (ZMM/BSP) to assist it in updating its ten-year campus development plan. This plan responds to West Virginian Code §18B-19 and the Council’s Rule for Capital Project Management, Series 12, that all community and technical colleges develop/update their campus master plan as a prerequisite for capital funding.

Representatives from administration, faculty, staff and students began working with ZMM/BSP in March 2016 to develop a ten-year campus development plan for its campuses and facilities in Raleigh, Mercer, Greenbrier and Nicholas Counties. The planning team in its initial meeting identified the following themes that guided development of the campus plan:

- Address how the college’s vision will assimilate the decrease in student enrollment.
- Address the future of the recently acquired U. S. Department of Agriculture property on Airport Road.
• Designate space for new buildings in the future.

The Campus Development Plan is intended to be used as a guide for architects, landscape architects, engineers and other disciplines as New River moves forward with future campus development to support its academic programs, campus life and physical presence. The major recommendations of the plan are to improve existing facilities by addressing deferred maintenance needs and to more closely align the square footage owned and operated by New River with its current and projected enrollment and current and future programs requirements.

Enrollment over the past few years at New River has declined as it has at many community and technical colleges. A couple of locations have seen an increase. Mercer County and the Advanced Technology Center in Ghent have experienced a modest increase, the Raleigh County Campus has remained steady while the Greenbrier Valley and the Nicholas County Campuses have both declined in enrollment. Current enrollment and projected enrollment in the upcoming years is lower than the enrollment previously supported by the campuses; although, modest annual enrollment growth is projected over the next ten years. Below is the annual headcount enrollment by year for the past six years:

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual Head Count Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>2,223</td>
</tr>
<tr>
<td>2014</td>
<td>2,879</td>
</tr>
<tr>
<td>2013</td>
<td>3,885</td>
</tr>
<tr>
<td>2012</td>
<td>4,315</td>
</tr>
<tr>
<td>2011</td>
<td>4,682</td>
</tr>
<tr>
<td>2010</td>
<td>4,268</td>
</tr>
</tbody>
</table>

New River’s Campuses are comprised of several properties and numerous facilities totaling approximately 422,200 square feet:

• Raleigh County Campus and Facilities (197,161 square feet total):
 o Headquarter Building (Beaver), built in 2014, containing approximately 55,000 square feet
 o U.S. Department of Agriculture Facility (Beaver) – 42,616 square feet as follows:
 ▪ Main Building - built in 1979 as the Appalachian Soil and Water Conservation Research Laboratory – 31,244 square feet and a later addition – 3,600 square feet
 ▪ Separate greenhouse – 1,440 square feet
 ▪ Two metal buildings – 6,332 square feet
 o Advanced Technology Center (Ghent) – 93,000 square feet, built in 2002
 o Center for Rehabilitation Sciences (Beckley – leased) – 6,500 square feet
• Mercer County Campus and Facilities (total 35,000 square feet total):
 o Bank Building (Princeton, leased with an option to purchase) – 35,000 square feet

• Greenbrier Valley Campus Facilities and Property (168,000 square feet total):
 o Greenbrier Hall (Lewisburg) – 48,000 square feet, renovated in 1995
 o Arts and Sciences Center (Lewisburg) – 32,000 square feet, renovated in 2014
 o Machine Tool Technology Center (Lewisburg – former Lewisburg Elementary School Property) – the complex is comprised of six buildings that were built at various times between 1924 to the early 1980s totaling 79,600 square feet as follows:
 ▪ Building A – former classroom building
 ▪ Building B – former classroom building
 ▪ Building C – former kitchen/cafeteria
 ▪ Building D – former classroom building
 ▪ Building E – original school building, built in 1924
 ▪ Building F – small residential building
 o Library Building (Lewisburg – leased from the City of Lewisburg) – 3,000 square feet, built in 1834, restored in 1940
 o Salisbury Farm (Lewisburg) 48.7 acres

• Nicholas County Campus and Facilities (22,800 square feet total):
 o Nicholas County Center (Summersville) – original building – 10,000 square feet, built in 1986, and addition – 8,000 square feet, built in 1998
 o Faculty Office Building (temporary building) – 1,790 square feet
 o Allied Health Education Center (Summersville - leased) – 4,800 square feet

An analysis of “Current Facilities Usage,” presented below, was prepared by Suttle & Stalnaker for a report to the Council in June 2016 that compares New River to six sister institutions in terms of the number of students each 10,000 square feet supports. As footnoted by Suttle & Stalnaker, the number of students is based on 2014 unduplicated enrollment data from the West Virginia Report Card 2015, and square footage numbers from a BRIM report as of January 2016.

<table>
<thead>
<tr>
<th>Institution</th>
<th>Students/10,000 Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>BridgeValley CTC</td>
<td>329</td>
</tr>
<tr>
<td>Mountwest CTC</td>
<td>238</td>
</tr>
<tr>
<td>Eastern West Virginia CTC</td>
<td>204</td>
</tr>
<tr>
<td>WVU Parkersburg</td>
<td>98</td>
</tr>
<tr>
<td>West Virginia Northern</td>
<td>91</td>
</tr>
<tr>
<td>Southern West Virginia CTC</td>
<td>79</td>
</tr>
<tr>
<td>New River CTC</td>
<td>64</td>
</tr>
</tbody>
</table>
Over the past few years, New River has acquired or leased several buildings/facilities through procedures that did not require adherence to the Council’s policies for acquisition. These properties are not well suited in their current condition for community and technical college programs. They all require significant capital investment to bring them up to contemporary standards; specifically, the Lee Street Complex in Lewisburg, the U.S. Department of Agriculture Facilities in Beaver and the Princeton Bank Building in Mercer County. The total cost of renovating these properties to contemporary standards is prohibitive for New River and the cost of maintaining them at their current standards is stressing New River’s finances.

The Campus Development Plan in Section 10 presents a phased implementation plan for projects starting with immediate deferred maintenance needs and new construction through 2026.

<table>
<thead>
<tr>
<th>Phase 1: 2017</th>
<th>Cost Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nicholas County Campus – Roof Replacement</td>
<td>$300,000</td>
</tr>
<tr>
<td>2. Advanced Technology Center, Ghent – Roof Repair</td>
<td>$80,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2: 2018 – 2019</th>
<th>Cost Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Greenbrier Hall – Boiler Replacement</td>
<td>$100,000</td>
</tr>
<tr>
<td>4. Nicholas County Campus – Parking Lot Repairs</td>
<td>$10,000</td>
</tr>
<tr>
<td>5. Advanced Technology Center, Ghent – New Fire Pump/Tank</td>
<td>$200,000</td>
</tr>
<tr>
<td>6. General Deferred Maintenance Projects</td>
<td>$500,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 3: 2020 – 2022</th>
<th>Cost Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Addition to Nicholas County Campus</td>
<td>$1,300,000</td>
</tr>
<tr>
<td>8. Site Improvements – Entrance Signage at All Campuses</td>
<td>$500,000</td>
</tr>
<tr>
<td>9. General Deferred Maintenance Projects</td>
<td>$500,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 4: 2023 – 2026</th>
<th>Cost Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. New Advanced Technology Center, Lewisburg</td>
<td>$7,500,000</td>
</tr>
</tbody>
</table>

Total Investment $10,990,000

Council Staff Recommendations

The phased implementation plan above reflects the recommendations of the Campus Development Plan and of the Council staff. Given the multi-year budget cuts that state government and higher education have experienced and will continue to experience for the next few years; the financial pressures that New River is experiencing; the year to year decline in enrollment; the need to bring the square footage owned and operated in line with current and projected enrollment; and to minimize the need for significant capital investments in unneeded facilities, staff recommends the following:

1. **New River CTC Headquarter Building, Beaver**: This is the recently completed headquarter building for New River. It was built with lottery revenue bond proceeds and the building should be retained.

2. **U.S. Department of Agriculture Facilities**: New River acquired this facility by a quitclaim deed from the Department of Agriculture in December 2014, but has not
identified a programmatic need for it. This facility will require a significant capital investment to upgrade it to contemporary standards after being vacant for approximately six years. There are restrictions on its use and disposal, as a result, New River has requested that the U.S. Department of Agriculture take the property back as soon as possible. The Department of Agriculture is considering this request.

3. **Advanced Technology Center, Ghent:** This building should be retained by New River. It is located directly beside I-77 at the Ghent exit and is highly visible from interstate. Because of its unobstructed open interior it is ideally suited to meet the growing demands for technically skilled workforce training such as industrial technology, electrical distribution engineering technology, welding technology and automotive technology. A significant capital investment has already been made in adapting this facility for these types of programs. The building and property were purchased in 2010 for $4 million with a $3.3 million American Recovery and Reinvestment Act State Fiscal Stabilization Fund Grant from the Governor’s Office and $600,000 from New River’s reserves.

4. **Center for Rehabilitation Sciences, Beckley:** As recommended, New River terminated its lease for this building and has moved its programs to the Headquarter Building in Beaver.

5. **Greenbrier Hall, Lewisburg:** This is the main classroom and office building at the Greenbrier Valley Campus. It should be retained and its utilization examined to make sure that it is fully utilized.

6. **Arts and Sciences Building, Lewisburg:** This is a newly renovated building on the Greenbrier Valley Campus adjacent to Greenbrier Hall. It is currently underutilized. New River is relocating programs housed at the Lee Street Complex into this building. This building was renovated with lottery revenue bond proceeds and other funds. It should be retained.

7. **Lee Street Complex:** This complex should be vacated, programs moved to Greenbrier Hall and the Arts and Sciences Building and the property sold. This property was purchased with a $400,000 loan secured by the by the New River Community and Technical College Foundation which was paid back over a four-year period. In order to provide a revenue stream to repay the loan, New River leased the complex and made an annual $90,000 lease payment to the Foundation with the Foundation contributing $10,000 annually toward the debt service payment. When the complex is sold, 90% of the proceeds should be paid to new River in direct proportion to its contribution toward the purchase. New River has already moved its programs out of this facility and the Foundation is actively engaged in trying to find a buyer.

8. **Greenbrier Valley Campus Library, Lewisburg:** The layout of the building and its structure are not conducive to accommodate a modern library. The annual lease
payment that new River pays is one dollar per year; however, the college is required to pay for maintenance, upkeep and utilities as long as it is used for the library. New River should end its lease with the City of Lewisburg and move its library to the new Greenbrier County Library, or house it in Greenbrier Hall or the Arts and Sciences Center.

9. **Machine Tool Technology Center, Lewisburg:** Given the need for a facility in Lewisburg to teach welding, it is recommended that this lease facility be retained for the time being until a more suitable facility is found to lease or until a new Applied Technology Center can be built on the retained property from Salisbury Farm. The proceeds from the sale of Salisbury Farm could fund or partially fund construction of the new Applied Technology Center.

10. **Salisbury Farm, Lewisburg:** New River should retain approximately 5 to 10 acres for future expansion and sell the remaining 38 two 43 acres.

11. **Princeton Bank Building, Mercer County:** New River should terminate or renegotiate its lease. A termination of the lease would lead to an annual savings of $178,200 in lease payments and utilities. This facility would require approximately $2.25 million to renovate to contemporary standards for community and technical college programs according to the estimate in the Campus Development Plan. New River could lease space from Bluefield State College, local high schools and the Vocational Center in Princeton until enrollment justifies a dedicated New River owned facility.

12. **Nicholas County Center, Summersville:** This is the main classroom and office building and Nicholas County. It was originally built by the Nicholas County Building Commission for Glenville State College’s Nicholas County Center and was leased for many years. The Nicholas County Center was separated from when will State College and ultimately became New River’s Nicholas County Center Lottery revenue bond proceeds were used to purchase the building. This building should be retained.

13. **Allied Health Education Center, Summersville:** New River leases approximately 4,800 square feet for allied health programs and it Summersville’s workforce development office in a strip mall building adjacent to U.S. Route 19. Canceling this lease and moving the programs to the Nicholas County Center could save an estimated $103,000 annually in lease payments and utilities.

14. **Council Policies:** All capital projects and property transactions must be advanced according to the Council’s Rule for Capital Project Management, Series 12.
ACKNOWLEDGEMENTS

New River Community and Technical College embarked on a campus master planning process to establish a framework for the orderly development of all capital improvements that support the mission, vision, values, and strategic initiatives of the College. The successful master planning process included a comprehensive look at the physical environment of the campus and how that environment helps New River CTC succeed in its educational mission. The Campus Development Plan was prepared with support and input from the College, including a Steering Committee, the faculty, staff, alumni and students. The consultant team acknowledges this important input, with many thanks to the following:

Steering Committee
Dr. L. Marshall Washington, President
Mrs. Leah Taylor, Vice President of Administrative Services
Mrs. Heike Soeffker-Culicerto, CFO
Mr. Robert Runion, Director of Facilities and Classified Staff Representative
Mr. Bruce Sneidman, Professor of Business and Faculty Senate Representative

Also, many thanks to the Extended Cabinet and the Facilities Committee Members for their time and effort in participating with the meetings. Their ideas and discussions were invaluable to the Master Planning effort.

Consultant Team
ZMM Architects and Engineers
Bullock Smith Partners
EXECUTIVE SUMMARY

New River Community and Technical College began the campus master planning process in March 2016 by conducting a visioning session with the Steering Committee. The purpose of the visioning process was to gather information about the College, programs, and culture, and to provide an open forum about the development of facilities and future plans for the institution. The discussions during this initial meeting produced several themes that guided the development of the Master Plan:

☐ The master plan needs to address how the College’s vision will assimilate the decrease in enrollment.

☐ The master plan needs to evaluate the existing buildings and make recommendations for renovation and maintenance of these selected buildings.

☐ The master plan needs to address the future of New River CTC’s newly acquired USDA property, which is located on Airport Rd close to the main Raleigh County Campus building.

☐ The master plan needs to designate space for new buildings in the future.

Throughout the years, New River CTC has acquired several properties in four counties in West Virginia: Nicholas, Raleigh, Greenbrier, and Mercer. The vast geographical reach of these properties are a tremendous asset to the college. These properties contribute greatly to the programs and offerings of the college.

In the past eight years, New River CTC has moved into a new location in Mercer County, acquired a new property with many possibilities in Raleigh County, built the main Raleigh County Campus in Beaver, moved into the Ghent Advanced Technology Center, renovated the Arts and Science Building in Lewisburg, and has undertaken several smaller projects to ensure the learning environment of their students is meaningful and enjoyable.

Since the implementation of the projects listed above, New River CTC needs to evaluate their existing building needs and plan for the maintenance and future of the underutilized and/or older buildings.

The attached Master Plan document indicates the strategy to implement the vision noted above. Existing facilities were evaluated to quantify and prioritize needs. Enrollment, demographics, and program offerings were examined to determine realistic requirements for new and replacement facilities. All of the needs were then prioritized, and a timing, phasing, and cost analysis for the plans were developed. The outcome of this process is a realistic strategy to guide the development of New River Community and Technical College in a manner that supports the priorities and vision of the college.
TABLE OF CONTENTS

1. Existing Building Assessments ... 4
2. Enrollment and Demographic Assessment 57
3. Deferred Maintenance Projects ... 58
4. Existing Building Needs .. 59
5. Major Site Improvements .. 62
6. Infrastructure Improvements ... 64
7. Property Acquisition Boundaries 65
8. New Facilities and Building Sites 66
9. List of Capital Projects ... 69
10. Timing, Phasing and Projected Costs 70
11. Campus Interaction .. 71
12. Impact on Local Community .. 73
RALEIGH COUNTY CAMPUS ASSESSMENT

BACKGROUND

The main Raleigh County Campus building is located in Beaver, WV located just off of I-64 East exit 125B. This new building was constructed in 2014 and consists of approximately 55,000 sqft.

Prior to construction of the new building, New River CTC was leasing several buildings around Beckley which did not have sufficient or appropriate space to house offices or to meet the technical education needs of the community. A new location was needed with the proper space to both meet the needs of the education mission and allow capacity for growth, which was the highest priority of the college.

The Raleigh County Campus consists of classrooms, computer classrooms, several science labs, IVN classrooms, faculty offices, as well as the main administration offices for New River CTC. The design features a rotunda which multi-functions as student space, event space, and the main entrance for the building. The building’s materials consist of brick on the exterior, gypsum board walls and vinyl tile for the interior. The building is fully sprinklered.

BUILDING ENTRANCE

The building entrance was brought up several times during the campus forum. The main Rotunda entrance is not in close proximity to either parking lot, so most faculty, staff, and students use the back entrance that is connected to a classroom hallway. This rear entrance does not have automated ADA operators, and the main entrance is a long walk from the handicapped parking spaces.

The parking lot and entrances cause confusion for first time visitors. In response, enhancing the amount of directional parking lot signage is suggested. Also, directional signage is located on I-64, but once exiting the interstate, more directional signage is needed to direct visitors onto Airport Road.

INTERIOR

Being a new building, the interior finishes are in good condition. The interior signage is becoming the standard for New River CTC and they are in the process of updating other campuses with this signage to increase consistency. During construction, most of the student lounge furniture was deleted for cost savings, and students have a difficult time finding a place to rest between classes. New student lounge furniture is recommended.

CAMPUS FORUM

The comments about the Raleigh County Campus mainly consisted of the need for student gathering areas with comfortable seating and directional signage for the entrance and parking lots.
ELECTRICAL

The electrical system consists of a pad mounted transformer located behind the building that feeds a 2000A 277/480V 3ph Square D Main Switchboard on the interior of the back of the building. This switchboard then feeds a 1200A 277/480V 3ph switchboard on the second story, several smaller panel, and dry type transformers throughout the building. The electrical system is in good condition. Electrical panel clearances have not been maintained in some of the data closets as the telecommunications infrastructure has been installed or expanded.

The building has a 2014 Cummins 200KW 277/480V 3ph diesel generator that handles the emergency lighting loads and elevator. The generator has two circuit breakers that feed two automatic transfer switches. One transfer switch is for a distribution panel the serves emergency lighting and the other transfer switch is for a panel for the elevator. The exterior LED wallpacks have integral emergency drivers.

The lighting in the building is mostly recessed fluorescent and LED type. There are some linear pendants is some areas and linear fluorescent strip fixture in electrical/mechanical spaces. The lighting control consists of a combination of lighting control panel with pushbutton overrides and occupancy sensors. Exterior lighting is handled with LED wallpacks and ~20’ area pole lights.

The fire alarm control panel is an Edwards EST3. This fire alarm control panel communicates with wall mounted and ceiling mounted notification devices and wall mounted pull stations. There are also remote annunciator panels with voice communication capability in the center round lobby and the security office. This system is not in need of any updates.

MECHANICAL

The new HVAC system included Trane Intellipak rooftop units with DX cooling and gas heating (medium pressure gas regulated at each unit). The units were either single zone VAV or provided with single duct VAV terminal units with electric reheat. The building was mostly plenum return. Most classrooms appeared to have individual thermostatic control; offices and corridors were zoned together. Entrance vestibules were provided with electric wall heaters. There is a Trane Tracer SC building automation system with a computer workstation in a maintenance storage room. The BAS utilized room temperature sensors and several occupancy sensors. Most science classrooms were furnished with fume exhaust hoods. Individual exhaust fans were provided for each hood with the fan control switch at the hood. Exhaust ductwork appeared to be stainless steel; exhaust fans were not variable speed but were provided with inline filter cabinets, discharge blast gates for balancing and proper discharge plenums with guy-wires. Exhaust hoods were not observed to have current inspection/testing identification. One teacher stressed his concern to have a fume hood relocated from a storage closet to the classroom for safety concerns. For clarification,
science classrooms are not science laboratories requiring dedicated exhaust per sqft. Several flammable storage cabinets were observed and none were provided with a dedicated, constant exhaust. Consider providing ventilation if cabinets are used to store flammable and/or explosive materials. An approved, filter-type exhaust hood was observed and deemed compliant; one filter type hood was located on the floor and not installed or operational. The Radiologic Technology Lab was provided with lead based/lined walls to protect the surrounding space occupants, however, the wall separating the occupants within the operation/control area and the wall separating that space from the adjacent room were not lead based/lined walls. Proper toilet room and janitor closet exhaust was observed and operational. Dedicated cooling units were observed in the large data closets and electrical rooms with transformers.

It is recommended to investigate the completeness of the lead based/lined walls for the Radiologic Technology Lab.

ELEVATOR

Elevator equipment was brand new with no observable issues. The elevator equipment room was provided with a split-system, dedicated cooling unit. The elevator car was provided with all Fireman’s operation connections, communications and overrides.

PLUMBING

The domestic water service has backflow prevention. Directly downstream of the backflow preventers, there are 2 water meters, one on the main line and the other on the first branch off the main line.

There are two main water heater that serve this facility. Both are 96% efficient Lochinvar Shield gas water heaters. Both have an ASSE 1017 rated thermostatic mixing valve at each water heater. The leaving hot water temperature for both water heaters is 117 degrees F. There are expansion tanks installed on both water heaters as well as a hot water recirculation systems. The plumbing fixtures are in good condition.

This facility is fed with a 5psi gas line with step-down regulators at each fixture that requires gas. The gas meter and main shut-off valve is directly outside of this building.

The science lab classrooms are equipped with a safety shower and an eye wash station. Each sink has a gooseneck type faucet with a gas cock. Each fume hood has a water and gas cock. The branch sanitary piping serving the sinks and hoods is rated for acid-waste use. The sanitary lines associated with the lab sinks discharge into an acid neutralizing tank located outside the building. The gas piping serving the science classroom has a solenoid valve installed directly off the main line and are wired to an emergency shut-down switch located in each science classroom.
There is medical grade compressed air and vacuum system installed to serve the medical teaching classrooms. They are both in good condition.

The roof drains are in good condition.

Recommendations are to set the leaving temperature of both water heaters to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Install ASSE 1071 rated emergency thermostatic mixing valves on all safety showers and eye wash stations throughout the facility.

FIRE PROTECTION

The building has a complete fire protection sprinkler system.
ADVANCED TECHNOLOGY CENTER ASSESSMENT

BACKGROUND

The Advanced Technology Center in Ghent, WV is located directly beside I-77 at the Ghent exit. The location has high visibility from the interstate. The building was dedicated in 2010 and consists of approximately 93,000 sqft.

Built in 2002, the building became available to New River CTC that would allow the college to serve the growing demands for a technically-skilled workforce in southern West Virginia. The use of the facility is almost unlimited, but currently the building offers Industrial Technology, Electrical Distribution Engineering Technology, Welding Technology, and Automotive Technology.

The metal building is fully sprinklered and contains 12 overhead garage doors that allow for a flexibility of uses. The roof leaks in several areas into the second floor offices, and will need to be repaired in this area soon.

BUILDING ENTRANCE

A gravel parking lot is in close proximity to the entrance, and a paved drive circles the building. The entrance does not have automated ADA operators, but the visitor’s restrooms in the lobby meets ADA requirements. There is a second story which houses offices, a lunch room, and storage spaces, but an elevator is not present.

INTERIOR

The building consists of a large work bay that is subdivided into different programs, classrooms, an IVN room, a student success center, faculty offices, administrative area, and a student gathering space with comfortable seating and activities.

ELECTRICAL

The electrical system consists of a pad mounted transformer located behind the building that feeds a 1000A 277/480V 3ph GE Main Distribution Panel on the interior of the back of the building. This panel then feeds several smaller panels and dry type transformers throughout the main building, a separate welding shop building, and a separate fire pump building. The electrical system is in good condition. The jockey pump controller in the fire pump building panel was the only item that showed deterioration with the entire bottom of the panel interior covered in rust.

The building has a 2001 Cummins 450KW 277/480V 3ph diesel generator that mainly handles the emergency lighting loads and a separate fire pump building that is currently inoperable. Emergency lighting handled by the generator is also supplemented by wall mounted emergency lights and integral emergency lights with most exit signs. The exit signs have remote heads that handle the exterior emergency lighting at exit doors.
The welding shop does not have any emergency lighting. Exit lights with integral emergency heads were stored on a shelf but had not replaced the standard exit lights at the time of the site visit. It is recommended to replace these exit signs with the ones already purchased and to add additional emergency wall packs to supplement these two exit signs in the main area and electrical room.

The lighting in large warehouse portion of the building is mostly HID round high bays with quarts restrike with additional fluorescent at lower levels where there are additional structures build within the warehouse. A combination of surface mounted and recessed T8 fluorescent lighting is installed in the office and classroom areas depending on ceiling type. The lighting control consists mostly of typical switches with no automatic shutoff means which is appropriate for most of the space. It is recommended to change out any remaining areas that are controlled by switches to occupancy sensors where this would not create a hazard such as in offices and corridors. The lighting in the welding shop and fire pump building is controlled by switches only. This type of control is appropriate for these buildings. The lighting in the welding shop general space and individual welding areas could be improved. In the general space of the welding shop the limited lighting is supplemented with sky lights. When there is an abundance of sunlight, the space is lit fairly well. When a cloud passes by, the space seems very dim. In the individual welding areas there is a single 42W compact fluorescent jar type fixture. This single point source light is bright in the limited area that it is able to light. This light could be changed out to a different light to reduce glare or add an additional jar type fixture to reduce shadow effects for a single point source light. The lighting in this area may be improved by increasing the general area lighting first since the top of the individual welding space is open.

The fire alarm control panel has been changed from an Edwards EST to an integrated Ademco security panel. The new fire alarm control panel uses the existing Edwards wall mounted notification devices and wall mounted pull stations. This system is not in need of any updates. There is no fire alarm system installed in the welding shop.

MECHANICAL

The main warehouse space was heated by multiple gas-fired, infrared radiant tube heaters. Heaters were suspended near the roof structure, provided with sidewall combustion air intake and flue vent ductwork; heaters appeared new and functional. Four, sidewall ventilation exhaust fans were on the north side of the structure with four, corresponding ventilation intake louvers on the south side of the structure. The main warehouse space was not cooled by mechanical means.

Office spaces were provided with YORK, R-410A, split system, heat pump fan coil units with supplemental electric heat. Interior units were located in closets or along the wall of the central classroom space. Classroom and office spaces were plenum return with filters installed on the actual
return grilles. Units were controlled by 7-day programmable wall thermostats. All units were observed to have required ventilation/outdoor air ducted to the common return and provided with a motor operated damper; ductwork terminated at sidewall intake louvers. Many units had condensate pumps which could lead to water issues without proper maintenance. One ventilation intake louver was observed to have a damaged weather hood and should be addressed. Bathroom exhaust fans were interlocked with light switches and assumed to terminate above roof. There was a split-system, dedicated cooling unit observed in the main DATA/IT room. The main fire pump room was not provided with any heating.

The welding lab was heated by two gas-fired, infrared radiant tube heaters. Heaters were suspended near the roof structure and only provided with flue vent ductwork; heaters appeared functional. A centralized welding exhaust system was observed. The COOK, 15 HP utility set exhaust fan was located outside and provided with a rated enclosure. The exhaust ductwork was stainless steel and each welding booth was provided with a point-source, articulating capture snorkel. Additional branch exhaust openings were observed and assumed required for balancing. All branch connections were provided with blast gates. There was a non-flammable storage cabinet that was not vented to the outdoors. Consider providing ventilation if cabinets are used to store flammable and/or explosive materials. There were small electric heaters provided in the office spaces. There were two, large intake louvers that were blanked-off from the inside and insulated. There was a sidewall intake gooseneck for the exhaust make-up air.

There were additional systems observed, but they were for classroom demonstration and not included in assessment (house inside building, HVAC wall-mounted tutorial/teaching units).

It is recommended to address the concerns with the fire pump and fire pump room. Consider providing electric heat to prevent freezing.

PLUMBING

The 2" domestic water service has backflow prevention however, it is located inside the fire pump room which currently has standing water in it.

The main water heater that serves the two story office area is an AO Smith 80 gallon electric water heater. There is no hot water recirculation system. There is no expansion tank installed. There are no thermostatic mixing valves installed on the hot water system throughout the facility.

The water heater that serves the shop area in the middle of the back room is an AO Smith 80 gallon electric water heater. There is no hot water recirculation system. There is no expansion tank installed. There are no thermostatic mixing valves installed on this hot water system.
The water closets throughout the building are a mixture of battery operated sensor and manual type flush valves. The lavatory’s have manual type faucets. The break room sinks have manual type faucets. The urinals are manual operated flush valves.

The plumbing fixtures are in good condition.

The main shop area has a main compressed air loop running around the entire perimeter of the shop. There are ⅜” air drops that run down each vertical beam around the perimeter and throughout the interior as well. The air compressor has been removed. There are portable air compressors serving individual work stations in the industrial classroom areas. There is a 15 hp air compressor serving the auto body shop area. This system has a 1” main line that serves 7 ceiling mounted hose reel assemblies.

There is a 2” low pressure natural gas service serving this facility. The main shut-off valve is directly outside the building.

There is a propane tank located outside of the building that serves a teaching lab. It has an emergency shut-off valve located in the classroom area.

It is recommended to replace the backflow preventer with a new one and install it inside the building at the water service entrance directly downstream of the shut-off valve. The existing water heaters serving the two story office and the shop area in the back: Set the leaving temperature of the existing water heater to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves at each plumbing fixture requiring hot water, install a hot water recirculation pump on the domestic water heating system, modify the existing domestic hot water piping to loop it back to the new recirculation pump, and install an expansion tank for the existing electric water heater.

Advanced technology center-welding classroom

There is no domestic water in this building. The self-contained eye wash station was empty. The building uses propane for heating. There is a 1000 gallon propane tank located in the back of the building. The main line is ¾” with a shut off valve at the propane tank. There is a regulator located on the outside wall of the building. There is a 60 gallon air compressor serving this classroom. It is in good condition. The main compressed air line is routed around the inside perimeter of the building with individual quick-connects at each workstation.

It is recommended to refill the eye wash station with solution.

The building is currently not sprinklered. Fire extinguishers were observed throughout the building. Since the building does not have any smoke or heat detectors, and it currently not sprinklered, the building must either be fully sprinklered, or it needs to have a full fire alarm system installed.
FIRE PROTECTION

The building has a complete fire protection sprinkler system. There is backflow prevention on the system in the fire pump room located outside of the facility. The system is provided with three separate zone valve assemblies, fire department connections, alarms and indicators. Fire extinguishers were observed throughout the building.

This building has a fire pump which is in a dedicated room outside of the facility. The fire pump needs replaced. The fire pump gets its water from a pond that is adjacent to the fire pump building. The fire pump building has a sump pump that is currently not working.

It is recommended that the fire pump be replaced as well as the sump pump in the pit. A fire water tank shall be installed for the fire system water source. The existing fire protection piping shall be inspected to determine if the pond water has deteriorated the interior of the piping. If it has, it will need to be replaced.
USDA PROPERTY ASSESSMENT

BACKGROUND

The buildings on this campus were built in 1979 as the Appalachian Soil and Water Conservation Research Laboratory. The project was commissioned by the United States Department of Agriculture. The main building is approximately 31,244 sqft and a later addition is 3,600 sqft. The property also consists of two metal buildings in the back, which are 3,900 sqft and 2,432 sqft. A separate greenhouse is 1,440 sqft. Two service buildings are occupied by the local 911 center and are not available to New River CTC. The entire campus available to New River CTC consists of 42,616 sqft. The buildings have been vacant for approximately 6 years. No buildings on the campus are currently sprinklered.

The main building contains approximately 25 offices, a large meeting/conference room, eight laboratories with a variety of functions, a growth chamber, three greenhouses, and multiple support and storage spaces. The exterior materials consist of polymer cement fascia and brick. The brick is in good condition.

Upon entry of Metal Building A, the obvious presence of mold has spread along a wall, which made the building uninhabitable. It is suspected that a water leak from inside the walls has created moisture and mold in this building. It is recommended that a mold investigation be conducted in this building. Metal Building B is a storage building located in the back of the campus.

BUILDING ENTRANCE

The parking lots and sidewalks leading to the main entry are in good condition and well landscaped. Directly in front of the main entrance is a circular drop-off area. The handicapped parking spaces are a long distance from the main entrance. It is recommended to move these spaces near the circular drop-off area. The entrance meets ADA standards, although ADA automatic door openers are not installed.

INTERIOR

Water leaks have occurred in two places in the main building. One leak is suspected to derive from a pipe busting in freezing temperatures. The other leak is suspected to originate from a dated roof and mechanical equipment. Since the building has been vacant for some time without the HVAC running, it is recommended to that a mold investigation be conducted in these areas. The roof on the east side of the building looks to be the original roof and needs to be replaced. The mechanical equipment in this area is also original.

The interior finishes are in generally moderate condition. The vinyl tile floors need to be replaced in some areas, but are in general good condition. The front offices have new ceilings and lights installed in those areas. The ceilings are covering up a tectum ceiling with wood beams that...
were once exposed. Ceiling tiles need to be replaced in the areas of the water leaks. The hardware handles do not meet ADA standards.

ELECTRICAL

The electrical system of the main building consists of a pad mounted transformer located on the side of the building near the main electrical room that feeds a 3000A 277/480V 3ph Square D switchboard. This switchboard feeds several transformers and Square D subpanels. The larger Metal Building A behind the main building is fed from an overhead transformer that serves a 225A 277/480V 3ph Square D panel. The smaller Metal Building B behind the main building is fed from an overhead transformer that serves a 100A 120/208V 3ph Square D panel. The electrical systems in all three buildings are in good condition.

The emergency lighting in the main building was handled by a diesel generator that served a 120/208V 400A transfer switch. The generator has since been removed which leave this building without any emergency lighting. The transfer switch and diesel tank are still installed. The generator will need to be replaced or other options will need to be considered for emergency lighting such as battery powered wall packs. The emergency lighting in both of the buildings behind the main building is handle by emergency wall packs.

The lighting in the all three buildings mainly consist of surface mounted and recessed fluorescent type. The main building also has some HID low bay fixtures with low color temperature lamps in the 2000-2700 range in a testing space. There is some incandescent lighting and HID lighting on exterior of the three buildings. The parking lot lighting is handled with HID lighting on poles with incandescent flood lights added to two of the poles to light the flagpole at ~5ft off the ground. The lighting is controlled by typical toggle switches in all three buildings. It is recommended to add occupancy sensors to corridor and office spaces to reduced energy consumption. The remaining spaces would need to consider the addition of occupancy sensors as the space use is determined.

The fire alarm control panel in the main building is a newer Silent Knight fire alarm and intrusion detection panel. This fire alarm control panel communicates with wall mounted and ceiling mounted notification devices and wall mounted pull stations. There is also remote annunciator panel at the main entrance. This system is not in need of any updates. The two buildings located behind the main building have fire alarm devices in operation. A separate fire alarm panel was not found for these buildings. It is expected that these buildings may be handled by the same fire alarm system as the main building as these buildings telecommunications infrastructure are all tied together.
MECHANICAL

Main Building

The HVAC system included one (1) 70 ton, 2008 Trane air–cooled chiller, one (1) 80 ton, 2008 Trane air–cooled chiller and one (1) 77.5 ton, 2005 Multistack air–cooled chiller producing chilled water. All chillers have integrated system pumping packages and controls. The three chillers were serving two separate chilled water systems (one Trane unit was piped together with the Multistack unit). Each chilled water system had its own air separator and bladder-type expansion tank. Glycol feeders were not observed, and the exterior chilled water piping was not identified to contain heat trace wiring. Heating water was produced by a 3,348 MBH dual fuel, 80% efficient Sellers boiler with a Gordon-Platt blower. The boiler utilized natural gas and fuel oil, fuel oil was located in an aboveground storage tank. There are two (2) base-mounted Bell and Gossett pumps for heating water distribution. The heating system was provided with a main 3-way modulating valve for temperature control, an air separator and expansion tanks. There is a Tracer Summit Building Automation System controlling all of the new equipment and interlocked with an existing pneumatic Johnson Controls heating control system. The un-remodeled AC units were provided with wall-mounted thermostats. There were multiple, abandoned mercury thermostats that should be dealt with.

The remodeled portion of the roof contained four (4) Trane T-series Climate Changer modular air handlers. All units were chilled water cooling, hot water heating, supply fan, return fan, filter sections, OA intake damper, relief damper, and plenums for vertical supply/return. All new RTU’s were also provided with inline hot water and chilled water recirculation pumps to overcome any coil flow pressure drops. The ductwork distribution system included VAV terminal units with hot water reheat coils and two-way control valves. The un-remodeled portion of the building contained four (4) small, packaged DX roof top units and one (1) large, packaged DX roof top unit that all appeared to be long past their expected service life. The units were constant volume, appeared to contain electric heaters and the ductwork distribution included inline heating coils.

The remodeled portion of the building Lab rooms had five (5) exhaust fume hoods with dedicated exhaust fans. The fume hoods were last inspected in 2011. The exhaust fans were all provided with ABB variable frequency drives with full load bypass to allow for variable exhaust flow at the fume hoods. The exhaust ductwork appeared to be stainless steel, and the utility set exhaust fans were a combination of Cook and Greenheck. Exhaust fans were provided with discharge blast gates for balancing and discharge plenums with guy wires. One exhaust fan serving the Isotope Lab was provided with multiple inline bag-in/bag-out filter cabinets with differential pressure controls. The un-remodeled
portion of the building Lab rooms had four (4) exhaust fume hoods with dedicated exhaust fans. The fume hoods were last inspected in 2011. The exhaust fans were not variable speed, and most of the associated ductwork appeared to be painted galvanized. The exhaust fans were provided with discharge plenums and substantial steel support structures instead of guy wires. General building exhaust fans all appeared to be in a decent operational state. The break room kitchen range was not provided with a range hood.

There were three (3) large greenhouses attached to the main building and one smaller, stand-alone greenhouse. The stand-alone greenhouse was provided with a Reznor 80% efficient gas-fired unit heater, sidewall ventilation fans and a large intake damper with water fill used for humidification of the space. All heating, ventilation and humidification controls were manual. The large greenhouses were provided with hot water piping serving unit heaters with pneumatic control valves. There were sidewall ventilation fans and intake dampers with water fill for humidification.

There were multiple hot water unit heaters in the mechanical rooms and ancillary spaces. The main vestibules were provided with hot water fin tube heating, smaller vestibules were provided with electric wall heaters. There was a Liebert split-system computer room cooling unit serving the main data room. The unit appeared to be long past its expected service life. Toilet rooms and Janitor’s Closets were provided with exhaust.

It is recommended to upgrade the heating system (boiler and pumps) as required for occupancy to increase system efficiency and reduce operating costs. It is recommended to have a certified, licensed contractor perform start-up and commissioning services on the existing chillers prior to utilizing them for cooling. Consider the final stages of remodeling to upgrade the roof top HVAC equipment by replacing the old DX RTUs and outdated exhaust fans and ductwork (design drawings already exist). Upgrade the hot water piping and controls in the greenhouses.

Ag/Lab Metal Storage Building

The HVAC was minimal. There was a Reznor 80% efficient gas-fired unit heater with a wall-mounted thermostat. There was a small utility set exhaust fan serving one room.

It is recommended to upgrade the HVAC as required for occupancy to increase system efficiency and reduce operating costs.

Ag/Lab Metal Research Building

There was an exterior 7.5 ton condensing unit that appears to be at the end of its service life. The interior AHU was in an inaccessible locked room. However, from the vent stack thru the roof, it is assumed to be an 80% efficient furnace and A-coil. The unit was controlled by a 7-day programmable wall thermostat. A Barber Coleman wall mounted relative
humidity sensor was observed, it is assumed the furnace has a humidifier installed in the ductwork. There were multiple walk-in coolers and/or freezers and incubators. There were three exhaust hoods with integral exhaust fans with sidewall discharge ductwork that may have been used for capturing fine particles. There were several, sidewall exhaust fans that were utilized for ventilation. This building was heavily contaminated with black mold and the walk through was rather brisk, focused and limited.

It is recommended to upgrade the HVAC as required for occupancy to increase system efficiency and reduce operating costs. Also, address any mold concerns with reusing ductwork, especially insulation. Any specialized equipment, including coolers, freezers, and exhaust hoods should be tested and verified by a licensed contractor prior to any reuse.

PLUMBING

Main Building
The 2-1/2” domestic water service has no backflow prevention. The domestic cold water also supplies make-up water for the hydronic heating and cooling system. There is no backflow prevention for the hot water hydronic system, but there is backflow prevention on the chilled water system.
There were several domestic water line breaks above the lay-in ceilings throughout the facility.

The main water heater that serves the facility is (2) AO Smith 80 gallon electric water heaters with a hot water recirculation pump. There is no expansion tank installed. There are no thermostatic mixing valves installed on the hot water system throughout the facility.

All the water closets throughout the facility are battery operated flush valve type fixtures. The lavatories throughout the building are a mixture of battery operated sensor and manual type faucets. The break room sinks have manual type faucets. The urinals have battery operated flush valves. The plumbing fixtures are in good condition.

The acetylene, nitrogen, nitrous oxide, helium, and hydrogen gases are piped to each lab and are fed from portable cylinder tanks (that have been removed) located along the outside wall at the back of the facility. There are solenoid valves installed on each main gas line that is wired to a centrally located shut down panel. The facility has a central compressed air and vacuum system that serve all the lab areas. The air compressor is 7.5 hp and is located inside the main mechanical room it is in need of replacement. The vacuum pump system is 3 hp and was installed in 1979 and in need of replacement. There are some labs in this facility that have argon and nitrogen stations. These stations have utility hook-ups on the wall to connect to portable gas cylinders.

The science lab classrooms are equipped with a safety shower and an eye wash station. Each sink has a gooseneck type faucet with a gas cock. The fume hoods have compressed air, gas, vacuum, domestic water and
distilled water outlets inside each hood. The branch sanitary piping serving the sinks and hoods is rated for acid-waste use. The sanitary lines associated with the lab sinks discharge into an underground acid neutralizing tank located outside.

This building had an addition built on in the 1980’s. There are two toilets in this area. The men’s toilet has a battery operated sensor type faucet for the lavatory, a manual flush valve for the water closet and a battery operated sensor type flush valve for the urinal. The women’s toilet has a battery operated sensor type faucet for the lavatory and a manual flush valve for the water closet. Each of these toilets have an electric instantaneous point-of-use water heater located under each lavatory. There are no thermostatic mixing valves installed on the lavatories.

The addition has a 1.5 hp sewage ejector located in the basement to serve the toilets. The ejector does not operate properly and emits a foul smell from the ejector housing.

It is recommended to install a new backflow preventer at the main water service entrance and on the make-up water branch lines serving the hydronic systems. Install expansion tank on the existing domestic water heater and set the leaving temperature to 140 degrees F (doing this will eliminate the threat of legionella growth in the system) and install point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Install ASSE 1071 rated emergency thermostatic mixing valves on all safety showers and eye wash stations throughout the facility. The domestic water line leaks above the ceiling need repaired and the insulation on the associated piping will need replaced. Each science lab will require an individual emergency shut-down switch for each type of gas supplying the classroom located inside the classroom. The sewage ejector serving the 1980’s addition needs to be replaced with a new unit of same size and capacity. The mechanical mixing valves serving the lavatories in the addition need removed and replaced with a thermostatic point-of-use mixing valve that is ASSE 1070 rated.

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.

Ag/Lab Metal Research Building

This building has a ¾” gas line that serves a gas fired unit heater. There are no gutters and downspouts installed.

The building is currently not sprinklered. Fire extinguishers were observed throughout the building.

Ag/Lab Metal Storage Building

The ¾” domestic water service has no backflow prevention. There is a residential electric tank type water heater serving this facility. There is no
expansion tank installed on the water heater. There are no thermostatic mixing valves installed on the domestic hot water system.

The lavatories have manual faucets. The water closets are flush tank type fixtures. The plumbing fixtures are in fair condition, the free standing electric water cooler is not ADA compliant.

The gutters and downspouts are in good working condition.

It is recommended to install a backflow preventer on the main water service entrance. Install ASSE 1070 rated point-of-use thermostatic mixing valves for every fixture in this building requiring hot water to protect against scalding water temperatures. Install an expansion tank for the existing electric water heater.

The building is currently not sprinklered. Fire extinguishers were observed throughout the building.
CENTER FOR REHABILITATION SCIENCES BUILDING ASSESSMENT

BACKGROUND

New River Community and Technical College leases space in downtown Beckley for their Rehabilitation Sciences and Medical Assisting programs. The approximate 6,500 sf space is located on the second level at 109 East Main Street a few blocks down from the Raleigh County Courthouse.

The space consists of six classrooms, seven offices, restrooms, a kitchen, and a reception space. The entire floor is sprinklered.

BUILDING ENTRANCE

The space is accessed by an elevator and stairwell from the entrance on the first floor. There is also a secondary egress stair that is located on the east side of the building, and the bottom stair is elevated by a suspended pulley system. Since the egress stair is dated and rusted, it is recommended that this egress stair is tested for performance. The handrails in the interior stairwell do not have returns that are required by building code.

Handicapped parking is provided by the City of Beckley on the street. The front entrance is not ADA accessible, but there is a side entrance with a ramp. The ramp appears to meet the 1:12 ramp requirement, but no ADA handrails are available.

One layer of the front, ground level windows has shattered and shards of broken glass are present. This presents a danger to not only to New River CTC, but to the public walking by the building as well. It is recommended to replace this piece of glass.

INTERIOR

The interior finishes are in good condition. The floor finishes include linoleum in the private restrooms, carpet in the hallway, offices, and classrooms, and ceramic tile in the public restrooms. The walls are painted gypsum board and the ceilings are acoustical tile.

ELECTRICAL

The electrical system of the leased space consists of a 200A Square D panel that feeds other panels including an older Wadsworth electric panel. The Wadsworth Electric was in business between 1904 and 1990 making the panel at least 25 years old. The panel is full with circuit breakers and has some rust but appears to be in good operational condition. There is spare circuit breaker capacity in the main newer Square D panel. There are three circuits ran with non-metallic sheathing cable typically referred to as the brand name “Romex”. This type of wiring is not allowed to be installed above a “dropped or suspended ceiling” such as acoustical tile in a commercial application no matter the building type classification. This entire space has acoustical tile. The electrical panels in the electrical/mechanical room do not have the proper amount of clearance because it is also used as a storage room.
The emergency lighting in this space is handled with emergency wall packs. More emergency wall packs need to be added to meet the minimum lighting levels along the paths of egress.

The lighting in this space consists mainly recessed fluorescent type with a few incandescent in some spaces. The lighting is controlled by typical toggle switches. It is recommended to add occupancy sensors to reduced energy consumption if the space is planned to be occupied long term.

This space does not have a fire alarm system.

MECHANICAL

This is a leased space and access to mechanical rooms, mechanical equipment and riser rooms was limited. Supply air diffusers were observed in the acoustic lay-in ceiling as well as in the floor. The system never ran so it was indeterminate as to whether the heated and/or cooled air was being introduced to the spaces from the ceiling, the floor, or both. There was an old Carrier Weathermaster split system air handling unit in the mechanical closet. The unit had open/removed panels exposing heating elements (gas or hot water or electric) and the unit didn’t appear to be operational. Several rooms/offices had ceiling fans, possibly to supplement occupants’ desire for air movement and/or cooling. We were not allowed to view other portions of the leased spaces within the building. The break room range was not provided with an exhaust hood. Bathroom exhaust fans were interlocked with bathroom light switches; it was assumed bathroom exhaust was ducted to the roof. There was a dryer that was properly vented by modifying an existing window. One Honeywell wall thermostat was observed. One thermostat for an entire floor of mixed use is not ideal for occupant comfort.

It is recommended to provide an exhaust hood above the break room range. It is acceptable to use a filtered, recirculation type hood. Request the landlord demonstrate ventilation code compliance. Poll the occupants (staff and students) about their issues/complaints with the HVAC (hot, cold, drafty, etc.) and deal directly with the Landlord to resolve and improve.

ELEVATOR

OTIS Elevator car had no observable issues. The elevator car was provided with all Fireman’s operation connections, communications and overrides. No access was provided to the elevator equipment room.

PLUMBING

The single restrooms have flush tank water closets and lavatories with manual type faucets. All plumbing fixtures are in good working condition. There are no thermostatic mixing valves on the lavatories. The gang toilets have manual flush valve water closets and urinals. The lavatories have manual type faucets. All plumbing fixtures are in good working condition. There are no thermostatic mixing valves on the lavatories.
The break room sinks have manual faucets. The plumbing fixtures are in good condition. There are no thermostatic mixing valves on the break room sinks. The electric water cooler is in good working condition.

Self-contained wall mounted eye wash station appears to be in good working condition.

The bathtub appears to be in good working condition. The bathtub has no thermostatic mixing valve installed. There is only a pressure balanced single lever valve.

It is recommended to install thermostatic mixing valves on all plumbing fixtures requiring hot water. This includes all lavatories, sinks and bathtubs.

FIRE PROTECTION

The building has a complete fire protection sprinkler system.
MERCER COUNTY CAMPUS ASSESSMENT

BACKGROUND

New River Community and Technical College recently moved into a building in downtown Princeton that was previously occupied by a bank. Under former arrangements, New River CTC’s instructional programs shared space with Bluefield State College’s associate and baccalaureate programs. There was little opportunity for establishing institutional identity or for fulfilling their community college mission.

The newly acquired building offers the college an excellent opportunity to integrate with downtown Princeton. The building is approximately 18,500 sf on each floor. Currently, the college is only occupying the ground level, while the basement level remains vacant. The building is not sprinklered.

The ground level consists of a student commons area, three classrooms, computer lab, student success center, open conference/study area, several faculty office spaces, and support rooms and storage. Due to the high ceiling height, the main entry has a grand foyer and the interior spaces all have access to ample natural light.

BUILDING ENTRANCE

The parking lots and sidewalks leading to the main entry are in good condition and well landscaped. Handicapped parking spaces are available and in close proximity to the main entrance.

It is recommended to add exterior building signage consistent with the signage at the Raleigh County Campus. Currently the building is only identified with temporary signs. Directional signage from the interstate is also needed to direct visitors to the campus.

INTERIOR

The interior finishes are in good condition and well maintained. Even so, the finishes have the style of a bank building which leads the ambience to feel more like an office building than an educational building. It is recommended to add interior room signage consistent with the Raleigh County Campus.

Several spaces are open to the hallway including a computer lab and a classroom. While the faculty offices and open conference/study area might benefit from an open environment, minor renovations are recommended to reduce noise interference in the classroom.

Currently, both elevators are not working, which makes the basement level uninhabitable. The basement level has potential for extra classrooms and office space.
ELECTRICAL

The electrical system consists of a new 2014 1600A 120/208V 3ph switchboard that fed several other new and older panels throughout the building. The basement level is currently being renovated.

The emergency lighting in this space is handled with emergency wall packs. Some of the emergency lighting in the basement area is older incandescent style that are plug in type. These should be replaced with smaller footprint LED wallpacks and make sure they are tied into the lighting circuit serving the area.

The lighting in this space consists mainly recessed T12 fluorescent type. It is recommended to change these lighting fixtures to LED type to reduce energy consumption and maintenance. Making this change will greatly reduce maintenance in the high ceiling areas. The lighting is controlled by typical toggle switches. It is recommended to add occupancy sensors to reduced energy consumption. The lighting levels in the older elevator equipment room need to be improved. This room is lit by a single incandescent fixture.

The building has a Firelite by Honeywell addressable fire alarm system with an annunciator at the main entrance. The building has smoke detection coverage throughout because there is not a sprinkler system. The fire alarm system also consists of wall mounted notification devices and wall mounted pull stations. This system is not in need of any updates.

MECHANICAL

The upper level HVAC was being provided by five (5) TRANE packaged roof top units that were installed on steel dunnage within a small lowered area of the roof. The supply and return ductwork was horizontally connected to the units and penetrated vertical walls of the “pit.” Most ductwork appeared to be watertight, but some ponding and rusting was observed and should be addressed. The units were all DX refrigerant cooling and gas heating. There was a 6th packaged RTU that was no longer being used. Most of the unit condensing coil fins were heavily damaged (hail) which is probably affecting overall unit performance. The return ductwork on all of the units had been modified (not original) to include an outdoor air intake hood with a motor operated damper. This was done to provide code required ventilation to the building (we recommend utilizing a factory provided economizer damper hood). There was standing water on the roof with mold and mildew growth, that should be addressed to prevent entreating contaminates into the outdoor air intake. Most of the units were manufactured in 2000 to 2002 or earlier, and in all actuality are closing reaching the end of their expected service life (15 years). The RTUs were all controlled by 7-day, programmable wall thermostats. Zoning (accurate heating and cooling) complaints are consistently reported for the one RTU serving the offices along southeast wall and the offices/computer room along the northeast wall.
The lower level HVAC was being provided by five (5) TRANE split system, 80% efficient, gas-fired furnaces. Several of the furnaces are “twinned” together to create one larger unit. The flue venting off all units is combined into a single, sidewall louvered termination. Outside air is ducted to the return air duct off all furnaces. OA duct is provided with a motor operated damper to open close during occupied/unoccupied schedules. The supply air was ducted and the ceiling is being used as a return air plenum. The ceiling is not plenum rated as it contains PVC piping and non-plenum rated wiring. The walls that define the lower level mechanical room need to be 1-hour rated since there is gas-fired equipment located within. The walls do not extend to the deck and the return duct only stubs to approximately 8’-0” above the floor at the furnace. Electric heaters were observed at most of the entrances. The elevator equipment rooms were provided with split-system, dedicated cooling equipment. The main IT/DATA closet in the lower level was not provided with dedicated cooling equipment; instead, the ceiling was open to the return air plenum for heat rejection. The other, smaller IT/DATA closet was provided with a split-system, dedicated cooling unit. The wall-mounted, indoor evaporator was provided with a condensate pump which can be a source of water issues without proper maintenance.

It is recommended to budget the funds to replace the roof top units and the split system furnaces as the units fail. Address the standing water beneath the upper level RTU intake openings. Address the exterior ductwork that might be leaking, rusting or ponding water. In order to occupy the lower level, the Fire Marshal stated the owner must address the 1-hour rated lower level mechanical room walls and lower level plenum return ceiling and ductwork.

ELEVATOR

One elevator equipment room contained new equipment (2013) with no observable issues. That elevator equipment room was provided with a split-system, dedicated cooling unit. The second elevator equipment room contained much older equipment, but the equipment appeared to be operational. That elevator equipment room was provided with a split-system, dedicated cooling unit. Both elevator cars were provided with all Fireman’s operation connections and overrides. We were informed the emergency call operation, which was part of each car, was not operational and the Fire Marshal was not allowing elevator use until the phone lines were repaired.

It is recommended to research the issues with the emergency phone and resolve the issue to utilize the elevators.
PLUMBING

The 1” domestic water service has a backflow preventer installed. However, there is a continuous stream of water running out of the backflow preventer relief outlet.

The main water heater that serves the facility is a Whirlpool 40 gallon gas water heater with an expansion tank and a hot water recirculation pump. There are no thermostatic mixing valves installed on the hot water system.

All the water closets throughout the facility are flush tank type fixtures. All the lavatories have manual faucets as well as the break room sinks. The urinals have manual flush valves. The plumbing fixtures located on the first floor are in good condition. The plumbing fixtures located in the basement are in need of replacement.

There were several roof drains that did not have strainers.

It is recommended to install a new backflow preventer at the main water service entrance. Replace the existing main water heater with a high-efficiency, condensing, modulating gas water heater. Set the leaving temperature of the new main water heater to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Install cast-iron dome type strainers on the roof drains.

FIRE PROTECTION

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.
GREENBRIER HALL ASSESSMENT

BACKGROUND

Greenbrier Hall is the main building for the Greenbrier Valley campus. The building is located in downtown Lewisburg in the Academy Park area. The 48,000 sqft facility was originally built for the Greenbrier Women’s College. The Greenbrier Community College Foundation was instrumental in raising funds to renovate the building, and in the 1990’s the building was completely renovated.

The building consists of several classrooms, computer labs, a 91-seat auditorium, student commons area, biology and physical science laboratories, learning resource center, and a cosmetology school.

The exterior materials consist of brick and stone and are in good shape. The windows are in good shape. The rubber roof is in good condition. The building is sprinklered.

BUILDING ENTRANCE

One of the building’s trademarks is the grand front entrance steps. The ADA entrance is located on the right side of the building on the ground level. The ADA entrance leads into the student commons area and has a clear path to the elevator. The entire building is ADA accessible. Handicap parking is located near the ADA entrance.

No exterior signage adorns the front of the building and only temporary signage is hanging at the rear entrance. This may be because of the historic nature of the building, but the building could benefit from more New River CTC exterior signage.

INTERIOR

The interior finishes are in good condition. The floor finishes include mostly vinyl tile and acoustical ceilings. The rooms have inconsistent interior room signage, and it is recommended to continue to replace room signage consistent with the Raleigh County Campus.

The student lounge offers a nice place for the students to study and relax between classes. Comfortable seating is available, as well as snack machines and televisions.

ELECTRICAL

The electrical system of the main building consists of a pad mounted transformer located on the side of the building that feeds a 600A 277/480V 3ph Square D switchboard. This switchboard feeds several transformers and Square D subpanels. The electrical system is in good condition. The electrical panels do not have the required clearance in many of the shared IT closets because of the data rack installations.
The emergency lighting is handled by emergency wall packs including some exit signs with emergency heads.

The lighting consists mainly of T8 fluorescent type with some T12 fluorescent and incandescent lighting. The lighting is controlled by typical toggle switches. It is recommended to add occupancy sensors to reduced energy consumption.

The fire alarm control panel in the main building is a newer EST panel. This fire alarm control panel communicates with wall mounted and ceiling mounted notification devices and wall mounted pull stations. There is also remote annunciator panel at the main entrance. This system is not in need of any updates.

MECHANICAL

The entire HVAC system was remodeled in 1997. Chilled water (CHWS/R) is produced by a McQuay, R-22, 125 ton, air-cooled chiller installed on grade outside the building. Exterior chilled water piping appeared to have heat trace wiring installed beneath the aluminum jacket insulation. It is unknown if the chilled water system contained any glycol, or if the original design called for glycol in the system. Glycol is not required if the chiller is drained in the winter. There is one (1), 5 HP, base-mounted, end-suction, constant speed, TACO pump dedicated to chilled water flow to/from the chiller. Heating water (HWS/R) is produced by two (2) Lochinvar, Copper-Fin II, 1,440 MBH, 84% efficient boilers located in the penthouse. Boilers have individual, inline, Bell and Gossett boiler pumps and factory installed boiler control panels. There are two (2) inline, 100% redundant, constant speed TACO pumps for the heating hot water that serves the two (2) AHUs and a heat exchanger. One AHU (AHU-2) is a constant volume, McQuay, modular, central station, dedicated 100% outdoor air, air-handling unit located in the penthouse providing ventilation air to the entire building. The AHU is provided with a preheat coil, cooling coil, heating coil, supply fan and outdoor air intake louver. The motor operated dampers at the AHU outdoor air intake louver appeared to be broken or non-functional. When the unit was shut down, the dampers did not close, allowing cold air to “fall” into the AHU. The preheat heating coil was damaged and not in use (probably froze from open OA dampers). There are two (2), 100% redundant, 7.5 HP, base-mounted, end-suction, constant speed TACO pumps for the combined heating and cooling 2-pipe system (HCWS/R). During cooling operation, chilled water (CHWS/R) from the chiller loop passes through a 3-way valve into the combined system loop (HCWS/R) and is pumped to the building fan coils. During heating operation, the combined system loop (HCWS/R) is heated by the heating water loop (HWS/R) at a shell-and-tube heat exchanger (HEX-1). This means the heating hot water loop is never in direct contact with the combined heating/cooling loop, nor the chilled water loop. All piping systems were provided with an air separator and expansion tanks. The second AHU (AHU-1) is located on the ground level in a mechanical room adjacent to the Lecture Hall and only serves the Lecture Hall. The constant volume AHU is provided with
return duct, preheat coil, cooling coil, heating coil, supply fan, outdoor air intake louver and relief louver. The central hallways of the building had exhaust grilles connected to a riser and roof-mounted exhaust fans. This was used to address the building pressurization from the ventilation air off AHU-2. The majority of spaces (offices, classrooms, hallways, vestibules) are heated and cooled by two-pipe fan coil units with 3-way control valves for constant system flow. Two-pipe systems allow either heating or cooling to occur at any given time throughout the entire building. Fan coil units were McQuay wall-mounted, ceiling-suspended and ceiling-recessed. The HVAC system was controlled and monitored by an Andover, central Building Automation System. The main DATA/IT room was not provided with a dedicated cooling unit or ventilation air sufficient to maintain space temperature. There were exhaust fume hoods in a Science Classroom. The fume hoods were provided with individual exhaust fans, operated by a switch at the hood. Hoods did not appear to have updated inspection stickers. There was a storage cabinet marked flammable that was not vented to the outdoors. Consider providing ventilation if cabinets are used to store flammable and/or explosive materials. The cosmetology department was not provided with code required dedicated exhaust airflow. Janitor’s closets and toilet rooms were observed to have exhaust airflow, but the toilet rooms were suspect on quantity.

It is recommended to address the motor operated dampers at the AHU-2 intake louver. This may be a controls issue, or a mechanical issue with the dampers. Replace the AHU-2 preheat coil, this coil is required for proper system operation. Allocate funds for the replacement of the copper fin boilers as they are reaching the end of their expected service life (20 years). Allocate funds for the replacement of the air-cooled chiller as it is reaching the end of its expected service life (20 years). Provide the code required 0.6 cfm/sqft of exhaust in the cosmetology department.

ELEVATOR

Elevator equipment was new with no observable issues. The elevator equipment room was not provided with a dedicated cooling unit but did have an exhaust grille. The elevator car was provided with all Fireman’s operation connections, communications and overrides.

It is recommended to install a dedicated cooling unit for the elevator equipment room.

PLUMBING

The 2-1/2” domestic water service has backflow prevention along with a water meter directly after the backflow preventer. There is also backflow prevention for the hydronic system make-up water line connected to the domestic cold water line.
There is a 75 gallon gas tank type water heater serving this facility (with the exception of the cosmetology classroom). The hot water distribution system is 105 degrees F with heat tracing installed along the entire length of the hot water main. There is no expansion tank installed on the water heater. There are no thermostatic mixing valves installed on the domestic hot water system (with the exception of the emergency safety showers in the science classrooms).

The lavatories and sinks have manual faucets. The water closets and urinals are manual flush valve type fixtures. The plumbing fixtures are in good condition.

There is a sump pump in the basement to collect condensate for the building’s HVAC systems.

There is a 1-1/4” low pressure natural gas service serving this facility. The gas meter and main shut-off valve is directly outside of this building.

The science lab classrooms are equipped with a safety shower and an eye wash station. Each sink has a gooseneck type faucet with a gas cock. Each fume hood has a water and gas cock. The branch sanitary piping serving the sinks and hoods is rated for acid-waste use. The sanitary lines associated with the lab sinks discharge into a point-of-use acid neutralizing tank located under each sink. The gas piping serving the science classrooms have solenoid valve installed directly off the main line and are wired to an emergency shut-down switch located in each science classroom.

The cosmetology classroom is served by a gas fire instantaneous water heater set at 120 degrees. All the domestic water piping associated with this system is PVC piping. There are no thermostatic mixing valves installed on this domestic hot water system. The hair washing stations do not have an interceptor to collect the hair before discharging into the sanitary sewer system.

It is recommended to replace the existing main water heater with a high-efficiency, condensing, modulating gas water heater. Set the leaving temperature of the new main water heater to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Install ASSE 1071 rated emergency thermostatic mixing valves on all safety showers and eye wash stations. The heat tracing already installed will maintain the 140 degree temperature in the main. Replace the existing sump pump with one of the same size and capacity.

Install a solids interceptor at each hair washing station directly after the drain outlet of each station. Install thermostatic mixing valves at each fixture in the cosmetology classroom requiring hot water.
The building has a complete sprinkler system. There is backflow prevention on the system. The system is provided one zone valve assembly, fire department connections, alarms and indicators. Fire extinguishers were observed throughout the building.
BACKGROUND

The Kyle and Ann Fort Arts and Science Building recently experienced a complete renovation in 2012. Located next to Greenbrier Hall, the approximately 32,000 sqft building consists of several classrooms, fitness classroom, computer lab, offices, kitchen, commons area, and several support spaces. The building also includes a pool, but the access has been blocked due to building code issues. The entire building is sprinklered.

The exterior materials consist of brick. The brick, windows, and doors appear to be in good shape. Signs of efflorescence are on the brick surrounding the pool area. Efflorescence may not be an issue, but can be a sign that water is entering and remaining in the wall. It is recommended to investigate potential water entering the walls surrounding the pool.

At the time of our building assessment, most classrooms were not being used, and furniture/accessories were not available for many rooms and labs.

BUILDING ENTRANCE

The entrance along with the entire building is ADA accessible. No handicap parking is located near the entrance. It is recommended to add handicap parking spaces and a clearly identified path to the main entrance of the building.

INTERIOR

Being recently renovated, the interior finishes are in excellent condition. The interior room signage is consistent with the Raleigh County Campus.

ELECTRICAL

The electrical system is made of a 4000A 120/208V 3ph Eaton switchboard. This switchboard feeds several Eaton subpanels. The electrical system is in good condition as the panels were manufactured in 2013.

The emergency lighting is handled by emergency battery packs integral to the fixtures.

The fire alarm control panel in the main building is a newer EST panel. This fire alarm control panel communicates with wall mounted and ceiling mounted notification devices and wall mounted pull stations. There is also remote annunciator panel at the main entrance. This system is not in need of any updates.
MECHANICAL

The lower level was served by AHU-1, located in the lower level mechanical room. AHU-1 is a McQuay, 25 ton, DX split system, variable air volume unit with an 80% efficient, indirect fired, modulating gas heater. The AHU has an ABB VFD, supply air, return air and intake air from a louver on the mechanical room wall. Combustion flue is properly routed and installed up through existing chimney. The AHU condensing unit is located on the roof above with type ACR refrigerant piping between the condensing unit and the AHU evaporator coil. Elastomeric piping insulation exposed to sunlight should be providing with UV protectant coating. The supply distribution includes TITUS VAV terminal units with SCR controlled electric reheat coils. The ceiling is a return air plenum and return air is ducted from the ceiling and through the mechanical room to the AHU. In addition to AHU-1, there were two (2) packaged roof top units (RTU). RTU-1 is a DX, gas fired, constant volume, 5 ton unit that served the classrooms and adjacent spaces. RTU-2 is a DX, gas-fired, variable volume, 30 ton unit that served the upper level spaces. The supply distribution includes TITUS VAV terminal units with SCR controlled electric reheat coils. The ceiling is a return air plenum. There was a Captive-Air, type-II, stainless steel exhaust hood installed within the kitchen. Fan and light controls were accessed at the hood control panel. The hood included an approved Ansul fire extinguishing system with an emergency pull at the main exit door. The kitchen hood was not provided with a dedicated make-up air unit as is typical to account for the exhaust at the hood. Make-up air can only transfer to the kitchen through a roll-up metal door. The hood exhaust fan should be interlocked with the roll-up door. Also, RTU-2 should increase the ventilation airflow rate when the kitchen exhaust is operational. The main IT/DATA closet was provided with an EMI dedicated, split-system cooling unit. Electric ceiling and wall heaters were observed at most entrance/exit doors. The HVAC system was controlled and monitored by an ASI, central Building Automation System. The BAS included space temperature sensors and CO2 sensors for VAV control and Demand Control Ventilation.

It is recommended to review operation and control of the kitchen exhaust hood and possibly provide a dedicated make-up air unit. Provide 2 coats of a UV-protectant on the exposed elastomeric refrigerant piping insulation.

ELEVATOR

Elevator equipment was new with no observable issues. The elevator equipment room was provided with a dedicated cooling unit but did have an exhaust grille. The elevator car was provided with all Fireman’s operation connections, communications and overrides.
PLUMBING

The 2-1/2" domestic water service has backflow prevention.

The main water heater that serves this facility is a 96% efficient Lochinvar Shield 1000 gallon gas water heater with an outlet temperature of 127 degrees F. An expansion tank is installed for the water heater. As well as a hot water recirculation system. There were no thermostatic mixing valves visible on the hot water system throughout the facility with the exception of the single shower unit.

The water closets throughout the building have hard wired sensor operated flush valves. The lavatories have hard wired sensor operated faucets. The break room sinks have manual type faucets. The urinals have hard wired sensor operated flush valves. The shower has an ASSE 1016 rated thermostatic mixing valve installed. The electric water coolers are in good working condition. The plumbing fixtures are in good condition.

There is a 3" low pressure natural gas service serving this facility. The main shut-off valve is directly outside the building.

The concession kitchen area has a gas solenoid valve for emergency shut-off for gas appliances under the kitchen hood. The drain line for the 3-bowl sink does not discharge into a grease interceptor.

There is an acid neutralizing tank that serves the photo lab darkroom that is not piped up. The sinks and all the associated acid resistant drainage piping serving the dark room have not been installed.

The roof drains are in good condition.

It is recommended to set the leaving temperature of the existing water heater to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves at each plumbing fixture requiring hot water. If the 3-bowl sink located in the concessions area washes grease-laden dishes, then an above-floor grease interceptor will need to be installed. Complete the installation of the dark room sinks, associated utility piping and acid neutralizing tank.

FIRE PROTECTION

The building has a complete fire protection sprinkler system. There is backflow prevention on the system. The system is provided one zone valve assembly, fire department connections, alarms and indicators. Fire extinguishers were observed throughout the building.
MACHINE TOOL TECHNOLOGY CENTER ASSESSMENT

BACKGROUND

The Machine Tool Technology Center is located off Fairview Road in Lewisburg. This leased building has approximately 6,000 sqft on two levels. The main level houses the machining program and the welding program equipment. The second level contains classrooms, a kitchen, and an office. The building is a pre-engineered metal building and the exterior materials consist of metal panels and pre-cast concrete panels. The metal roof appears to have rough spots, and will need to be replaced soon.

BUILDING ENTRANCE

This building is not ADA accessible. The parking lot is a gravel lot with no striping. The equipment is not spaced far enough apart for an ADA path. The stairs are the only way to the second floor.

The building is hard to locate for visitors. It is recommended to add directional signage as well as a ground sign in front of the building.

INTERIOR

This building’s use is a machine shop, and the interior surroundings reflect the use of the building.

ELECTRICAL

The electrical system consists of an overhead transformer that feeds 4 meters that serve two 400A and two 200A 120/208V 3ph Square D panels.

The emergency lighting is handled by exit signs with emergency heads. Additional emergency wall packs need to be added to provide the code required emergency lighting levels.

The lighting consists mainly of T8 fluorescent type with HID round high bays in the welding shop area and some incandescent lighting. The lighting is controlled by typical toggle switches. It is recommended to add occupancy sensors to reduced energy consumption in the office, restrooms, and classroom areas. The exterior lighting is handled mainly by HID wall packs around the entire building.

The building does not have a fire alarm system.

MECHANICAL

There is a small, packaged, DX rooftop unit providing conditioned airflow to the upper and lower level classroom areas. The RTU is controlled by a 7-day, programmable wall-mounted thermostat. The RTU is utilizing a plenum return ceiling. Access to the roof to inspect the RTU was not realistic. The age of the RTU is unknown; it is assumed the RTU is provided with propane heat. The main welding shop was heated by two (2) propane-fired, infrared tube heaters. The heaters were provided with
ventilation intake, flue vents and wall-mounted thermostats. The main welding shop also had two (2) sidewall exhaust fans that were used for general summer cooling with the overhead doors opened. The sidewall exhaust fans cannot be considered adequate for code-required exhaust from the welding lab because there were not dedicated louvers for the make-up air. The main welding tables were provided with two (2) exhaust fume hoods ducted to a single dedicated, roof-mounted exhaust fan. Control of the fume hood was activated at the breaker panel. The individual welding booths were not provided with dedicated, directional exhaust for the booth occupants. The break room range was provided with a recirculation type ventilation hood. All bathrooms were provided with a light switch activated ceiling exhaust fan. The ground level bathroom with an exterior wall was provided with a 4'-0" section of electric baseboard. A flammable storage cabinet was observed and was not provided with a dedicated, constant exhaust. Consider providing ventilation if cabinets are actually being used to store flammable and/or explosive materials.

It is recommended to provide additional exhaust to the welding lab to bring the welding lab to code compliance since it’s an accredited testing facility. Suggest providing an exhaust duct system that includes snorkels and blast gates as found at the welding lab of the ATC in Ghent. There were no complaints about the current heating or cooling of the entire building. Further investigate if code required ventilation is being provided by the RTU.

PLUMBING

The ¾" domestic water service has no backflow prevention. The domestic water piping throughout is PVC.

The water heater serving the upstairs and downstairs toilets is a Whirlpool 40 gallon electric water heater. There is no expansion tank installed on the water heater. The water heater serving the toilet in the main shop area is a Craftmaster 12 gallon electric water heater. There is no expansion tank on the water heater. There are no thermostatic mixing valves installed on either domestic hot water system.

The water closets are flush tank type fixtures. The lavatories have manual faucets. There is an unfinished shower upstairs in the restroom. The domestic water piping for this shower is roughed in only. With the exception of the shower, all of the plumbing fixtures are in fairly good condition.

The small classroom in the two story area has a compressed air system. The air compressor is a 3.5 hp compressor located in a storage room. The compressed air is distributed with a ½" main line with individual drops from the lay-in ceiling with quick disconnects at each drop outlet.
The building uses propane for heating. There is a 500 gallon propane tank located in the back of the building. The main line is ¾” with a shut off valve at the propane tank.

The main shop area has a compressed air system. The air compressor is a 10 hp compressor located in a storage room. The compressed air is distributed with a ½” main line with individual ½” vertical drops that each have a quick disconnects at each drop outlet.

The gutters and downspouts are in good condition.

It is recommended to install a backflow preventer on the main water service entrance. Remove all PVC on the domestic water system and install copper piping throughout. Set the leaving water temperature of the water heater to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system) and install ASSE 1070 rated point-of-use thermostatic mixing valves at each plumbing fixture requiring hot water. Install an ASSE 1016 rated thermostatic mixing valve for the shower. Install an expansion tank for each electric water heater.

FIRE PROTECTION

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.
BACKGROUND

The Lee Street Complex is housed in the former Lewisburg Elementary School buildings. The complex is comprised of six buildings, none of which are sprinklered.

Building A is a former classroom building. Classes being held here include nursing, medical assisting, phlebotomy, and EMT. This is a one-story building that is ADA accessible. The interior has remained unchanged since the elementary school occupied the building. The finishes are old and in poor condition. The roof will need to be replaced soon. The original single-pane windows are inefficient and will need to be replaced.

Building B is a former classroom building. This two-story building is currently vacant and not being used by New River CTC. The finishes are in good condition. The roof leaks and will need to be replaced soon. There is a ramp to the entrance of this building but it does not meet ADA guidelines.

Building C is the former kitchen/cafeteria building. This building housed the cafeteria and kitchen upstairs, and a classroom and mechanical room downstairs. The second level is not being used and the downstairs classroom is being used for storage. The roof leaks periodically and will need replaced soon. There is a ramp to the cafeteria, but it does not meet ADA guidelines.

Building D is a former classroom building. Workforce programs and gaming classes for The Greenbrier are held in this building. This building is comprised of classrooms, offices, and a restroom. The finishes are in good condition. The ADA entrance is at the back of the building. The roof leaks periodically and will need to be replaced soon.

Building E is the original Lewisburg Elementary School that was built in 1924. This is a two-story building with a full basement. The classrooms and hallways circulate around the gymnasium on both levels. The building is in very poor condition and is not suitable for occupancy. The list of deficiencies observed include: significant water and moisture damage in the basement that has led to the growth of mold on several walls, loose asbestos-containing floor tile, damage to the second floor framing caused by water infiltration, observed damage to the wood structure around the dated radiators, wood structure damage around the radiator on the stage, and an unsafe sidewalk leading to the rear entry. The brick needs repointed and is currently letting water infiltrate into the building. The windows are the original single-pane, non-tempered windows and create a hazard if broken. New River CTC does not occupy this building, but rents the gymnasium out for various community events.

The sixth building is small residential building adjacent to the school complex that is currently not being occupied by New River CTC.
ELECTRICAL

The electrical system of Building A consisted of one 225A and two 100A Square D main panels. These panels all have separate disconnects in the main electrical/mechanical room. The 225A is a newer panel with the two 100A being older Square D Panelettes that will be harder to find replacement parts. It is recommended to change the two 100A panels to newer style panels when any other building renovations are performed. Building B has one 200A and two 225A Square D panels with an interior building electric meter. The 200A panel serves HVAC loads. All of these panels are in good condition. Building C has a 200A 1ph 120/240V GE main panel with a separate 20A 1ph 120/240V GE panel for emergency lighting. These are older panels that would be recommended replacing as the building is renovated. “Building D” has two electrical systems. One for the front building and one for the rear building. A 400A 1ph 120/240V and 200A 1ph 120/240V Square D panels serve the front building and a 200A 1ph 120/240V and 60A 1ph 120/240V Square D panels serve the rear building. All of these panels are in good condition. Building E has multiple panels served from multiple services throughout the building. A newer Square D panel was located in the main mechanical room in the basement. Most of the panels are recessed in the corridors and are older panels by Trumbell and Square D Panelette type. One of the Trumbell panels was missing its deadfront therefore exposing all of the electrical parts when the typical panel cover was opened. The wiring that was able to be observed in Building E was older wiring with a cloth wrapping. It is recommended to replace the most of the electrical panels and most of the electrical wiring in this building.

Building A did not have any emergency lighting. The other buildings used emergency wall packs for emergency lighting. Many of them were older incandescent type that should be replaced with more compact LED type emergency wall packs with fresh batteries. Most of the exit signs were the older incandescent style with some bulbs burned out and some faces missing the red lens entirely. It is recommended to change these out to new LED exit signs that use less than 5W each. In many of the areas it would be ideal to install the exit signs with integral emergency heads. This would also allow remote emergency heads to be installed on the exterior egress doors that run off of the interior exit sign.

The lighting in all of the buildings were a combination of T12 and T8 fluorescent and incandescent lights. Many of the lenses on the fluorescent fixtures were aged and cracked. The yellowing of the older fluorescent lenses have cause a reduction in lighting levels. It is recommended to change out almost all of the lighting fixtures with newer LED lighting as renovations take place. At this time the lighting controls can be upgraded from basic toggle switches to incorporate occupancy sensors.
All of the buildings have a fire alarm system. The fire alarm panels that were observed were Edwards non-addressable type. Most of the notification device and pull stations themselves were by Notifier. It is recommended to change out the fire alarm to a newer addressable system as the building is renovated or sprinkler systems are added.

MECHANICAL

Building A
Heating to the classrooms, offices and hallways was provided by hot water, wall or ceiling mounted cabinet heaters. Heaters were controlled by wall mounted thermostats that all contain mercury. Most of the hot water piping was threaded or welded schedule 40 and much of it lacked any insulation. A small section of piping in the hallway appeared to be galvanized. Cooling within the office and classroom spaces was provided by residential grade, window air conditioners. Heating water was produced by two (2) 80% efficient, gas-fired, cast-iron sectional boilers with dedicated inline pumps. One boiler was very old and no longer operational. The second boiler, a Smith, two-sectional unit appeared newer, but still in need of repair. The multi-user toilet rooms had no exhaust or were extremely lacking in exhaust airflow. The single toilet rooms were provided with light switch activated ceiling exhaust fans. No exhaust was observed in the Janitor’s closet. A dedicated cooling was not provided for the basic DATA/IT closet; that may not be required based upon current system cooling demands.

It is recommended to upgrade the heating water system with high-efficiency, gas-fired, modulating, condensing boilers and new boiler/system pumps to increase the GPM flow rate to each heater to account for lower supply water temperatures. Review the exhaust grille locations and total airflows; change fans for increased airflow as required.

Building B
The building ventilation was ducted to each space from a dedicated outdoor air unit located in the mechanical room. The DOAS unit was provided with a 48KW electric heater, filter box and no air conditioning. The classroom and office spaces were provided with electric baseboard and most had residential grade, window air conditioners. Baseboard was controlled by a wall mounted thermostat containing mercury. Hallways were provided with electric wall or baseboard heaters at most of the main entrances. The multi-user toilet rooms had no exhaust or were extremely lacking in exhaust airflow. The single toilet rooms were provided with light switch activated ceiling exhaust fans. No exhaust was observed in the Janitor’s closet. A dedicated cooling was not provided for the basic DATA/IT closet; that may not be required based upon current system cooling demands.
Building HVAC operating costs would be greatly reduced if all the electric heat was eliminated. The best option is to replace with a Variable Refrigerant Flow (VRF) system and upgrade the DOAS unit. Also, review the exhaust grille locations and total airflows; change fans for increased airflow as required.

Building C

Two upper level classrooms were each provided with a packaged DX roof top unit for cooling and assumed ventilation air. Units were not ducted, just included a discharge and return air plenum in an open ceiling. Heating was provided by wall mounted, hot water cabinet unit heaters. The lower level classrooms were heated by wall mounted, hot water cabinet heaters. Cooling was provided by residential grade, window air conditioners. All observed thermostats were the old, mercury bulb style. There was a full cooking kitchen with a type-I, grease exhaust hood. The hood was provided with a dedicated exhaust fan, an intake hood for make-up air into the hood, and an ansl fire suppression system with emergency pull at the closest exit door. Main gas supply was provided with an emergency solenoid shut-off valve. There was packaged DX cooling, gas heating, roof top unit serving the kitchen with ducted supply and plenum return. The dish machine was not provided with a type-II hood or ducted discharge to capture the large amounts of steam/water vapor. There was an egg-crate style grille located above the dish machine in the ACT ceiling. There was a roof mounted exhaust fan above the grille. This layout allowed the hot, moist air from the dishwasher to migrate into the plenum ceiling and contribute to mold, mildew and bacteria growth. Within the cafeteria, there was an exposed, ceiling mounted AHU that was provided with a belt driven supply fan, hot water heating coil, return air and outdoor air connections. This was probably the original heating only make-up air unit for the cafeteria/kitchen and no longer appears operational. There was a packaged DX cooling, gas heat RTU on the roof above the cafeteria. That unit was provided with ducted supply and plenum return above the ACT ceiling. Toilet rooms were provided with a single, roof mounted exhaust fan ducted to each space. Electric heaters were observed at entrances. The system providing the heating hot water and/or steam was in need of major upgrades. It was unclear if the building was still utilizing steam heat, or if everything was already converted to hot water. The lower level mechanical room housed a damaged Crane steam/hot water boiler. There was a condensate receiver in the mechanical room, condensate traps and condensate piping, but that very well could have been abandoned and no longer in use. Some of the control valves had been upgraded to digital, hinting at a switch from steam to hot water.

It is recommended to replace the existing boiler with high-efficient, gas-fired, modulating, condensing boilers, new boiler/system pumps and investigate and replace the existing piping as required. Provide expansion, make-up water and air separation as required for proper hot water system operation. Confirm the cabinet heaters throughout the facility had been converted from steam to hot water, if not that would...
need to be done. Confirm code required ventilation was being provided through each roof top unit. Provide ventilation as required to spaces that will be occupied. In order to use the kitchen, the existing mechanical systems (exhaust, hoods, fire suppression, make-up air, etc.) would need to be tested by a licensed contractor; same for the existing coolers and freezers. The dishwasher needs to have a type-II hood installed above it to properly remove moisture. Demo and remove assumed, abandoned equipment in cafeteria.

Building D
The building only contains electric heat. Electric baseboard heaters were observed in the classrooms and office spaces. No air conditioning was observed. Most thermostats were the mercury bulb type. Exhaust was observed in toilet rooms and janitor’s closets. There were a few supplemental electric heaters observed in the toilet rooms (exterior walls). The building was not provided with any code-required ventilation.

It is recommended to install a dedicated outdoor air system (DOAS) to provide code-required ventilation air. Investigate the installation of a variable refrigerant flow (VRF) cooling and heat pump system. Maintain the electric heat as supplemental to the VRF system.

Building E
Steam is produced by a 2100 MBH boiler that was installed in 1999. The boiler was the newest and by far the nicest piece of mechanical equipment in the building. Steam is distributed through aged piping; piping and insulation that should be tested for its integrity and for asbestos. Steam served the original, 1-pipe, radiators; 1-pipe radiators only have one connection allowing steam and condensate to flow through the same pipe. Several classrooms had removed the original steam radiator and installed wall-mounted, steam cabinet heaters. The basement had ceiling mounted steam radiators, one of which was being suspended by a propped up piece of conduit. Most thermostats were mercury bulb type. There wasn’t any observable supplemental heat at the main Lee St. entrance to the building. The server room was cooled by a residential-grade window air conditioner. The gas piping was galvanized and should be replaced. No exhaust was observed in the toilet rooms or the janitor’s closets. There was no code-required ventilation air being provided anywhere in the building.

It is recommended to scrap the entire heating system (salvage the steam boiler) and provide something completely new that also addresses cooling and ventilation.

PLUMBING

Building A
The 1-1/2” domestic water service has no backflow prevention. The water heater that serves the majority of the classrooms is an AO Smith 50 gallon gas water heater. There is no expansion tank or hot water
recirculation system installed on this system. There are no thermostatic mixing valves installed on this domestic hot water system.

The water closets are flush tank type fixtures. The lavatories and break room sinks have manual faucets. The urinals have manual flush valves.

The service sink in the custodial closet is in need of replacement.

The plumbing fixtures are in fair condition. The electric water coolers are in need of replacement.

In the custodial closet, there is a sprinkler head that is fed from a branch domestic water line. There are no tamper or flow switches on this branch line.

The gutters and downspouts are in need of replacement.

There is a 4” low pressure natural gas service serving this facility. The main shut-off valve is directly outside the building.

It is recommended to install a backflow preventer at the main water service entrance. Install an expansion tank for the water heater serving the main lobby toilets. Replace the existing main water heater with a high-efficiency, condensing, modulating gas water heater. Set the leaving temperature of the new main water heater to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Install a hot water recirculation pump on the main domestic water heating system and modify the existing domestic hot water piping to loop it back to the new recirculation pump. Replace the janitor sink and the electric water coolers throughout the building. Replace the gutters and downspouts.

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.

Building B
The 1-1/2” domestic water service has no backflow prevention. The water heater that serves the majority of this facility is a Rudd 66 gallon electric water heater. There is no expansion tank or hot water recirculation system installed on this system. There are no thermostatic mixing valves installed on this domestic hot water system.

There are four classrooms that have a separate hot water system from the rest. These classrooms are served by 2 Rheem 2.5 gallon shelf mounted electric water heater located above the ceiling. The relief valve is not piped to a drain outlet. There are no drain pans installed, and no expansion tanks installed, and no thermostatic mixing valves installed on either one of these domestic hot water systems.

The water closets are flush tank type fixtures. The lavatories and break room sinks have manual faucets. The urinals have manual flush valves.
The plumbing fixtures are in fair condition. The electric water coolers are in need of replacement.

There is no gas service to this building.

It is recommended to install a backflow preventer at the main water service entrance. Install an expansion tank for each water heater located in this facility. Install a drain pan underneath each water heater located above the classroom ceilings and pipe the relief outlet to a floor drain. Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Set the leaving temperature of the main domestic water heater serving this building to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install a hot water recirculation pump on the main domestic water heating system and modify the existing domestic hot water piping to loop it back to the new recirculation pump.

Replace all electric water coolers.

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.

Building C

The 1-1/2” domestic water service has no backflow prevention.

The water heater that serves the kitchen area is a Rheem 91 gallon gas water heater. There is no expansion tank or hot water recirculation system installed on this system. There is an ASSE 1017 rated thermostatic mixing valve installed at the outlet of this water heater.

The water heater that serves the rest of the facility is a Rheem 91 gallon gas water heater. There is no expansion tank or hot water recirculation system installed on this system. There are no thermostatic mixing valves installed on this domestic hot water system.

The kitchen has a 3-bowl sink discharges into an in-floor grease interceptor. The lid of the interceptor is warped and caulked shut. The gas fired kitchen equipment under the kitchen hood have a solenoid valve for emergency shut-down.

The water closets are flush tank type fixtures. The lavatories and break room sinks have manual faucets. The urinals have manual flush valves. The plumbing fixtures are in fair condition. The electric water coolers are in need of replacement.

There is a 3” low pressure natural gas service serving this facility. The main shut-off valve is located inside of the mechanical room.
It is recommended to install a backflow preventer at the main water service entrance. Install an expansion tank for the water heater serving the main lobby toilets. Replace the existing water heaters with one high-efficiency, condensing, modulating gas water heater. Set the leaving temperature of the new main water heater to 140 degrees F (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. The existing thermostatic mixing valve serving the kitchen area shall remain. The existing hot water piping shall be intercepted and tied into the new water heater system. Install a hot water recirculation pump on the domestic water heating system and modify the existing domestic hot water piping to loop it back to the new recirculation pump.

Replace all electric water coolers.

Install a new in-floor grease interceptor and do a camera inspection of the sanitary piping downstream of the interceptor to verify if there is grease in the line.

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.

Building D

The 1" domestic water service has no backflow prevention.

The water heater that serves this facility is an AO Smith 50 gallon gas water heater. There is no expansion tank or hot water recirculation system installed on this system. There are no thermostatic mixing valves installed on this domestic hot water system.

The water closets are manual flush valve type fixtures. The lavatories and break room sinks have manual faucets. The urinals have manual flush valves. The plumbing fixtures are in fair condition. The electric water coolers are in need of replacement.

The gutters and downspouts are in fairly good condition.

It is recommended to install a backflow preventer at the main water service entrance. Install an expansion tank for the water heater serving this facility. Set the leaving temperature of the water heater to 140 degrees F (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Install a hot water recirculation pump on the main domestic water heating system and modify the existing domestic hot water piping to loop it back to the new recirculation pump.

Replace all electric water coolers.
The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.

Building E

The majority of the domestic water and sanitary sewer and vent piping is galvanized pipe.

The water heater that serves this facility is a Rheem 50 gallon gas water heater. There is no expansion tank or hot water recirculation system installed on this system. There are no thermostatic mixing valves installed on this domestic hot water system.

The water closets are flush tank type fixtures. The lavatories and break room sinks have manual faucets. The urinals have manual flush valves. The electric water coolers need replaced. All of the plumbing fixtures are in need of replacement.

There is a 4” low pressure natural gas service serving this facility. The main line enters the building in the corner of the Men’s Toilet in the basement.

It is recommended to install a backflow preventer at the main water service entrance. Install an expansion tank for the water heater serving this facility. Replace the existing 50 gallon gas water heater with a new one of same size and capacity. Set the leaving temperature of the new main water heater to 140 degrees F (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves throughout the facility at each plumbing fixture requiring hot water. Install a hot water recirculation pump on the main domestic water heating system and modify the existing domestic hot water piping to loop it back to the new recirculation pump.

Replace all the galvanized domestic water piping throughout the facility and replace with copper. Replace all the galvanized sanitary sewer and vent piping throughout the facility with cast iron no-hub.

Replace all the plumbing fixtures and electric water coolers throughout the facility.

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.
LIBRARY AT GREENBRIER VALLEY CAMPUS ASSESSMENT

BACKGROUND

New River Community and Technical College houses their library for the Greenbrier Valley Campus in the Town of Lewisburg’s historic library building located at 129 Courtney Drive across the street from Greenbrier Hall.

The historic library is on The National Registry of Historic Places. It was erected in 1834 as a library building for use of the Supreme Court of Appeals of Virginia. The building was restored in 1940. New River CTC leases this building from Lewisburg.

The two-story building is filled with stacks of books. Utilities are located in the basement. A quiet study area is located on the second floor.

During our on-site investigation, it appears the library is not frequented by the students. The building is in close proximity to the public library.

BUILDING ENTRANCE

This building is not ADA accessible. Due to the historic nature of the building, ADA improvements are not recommended.

INTERIOR

The layout of the building is not conducive to accommodate a modern library layout which is needed in this technology age. The floor at the second floor stack area appears to be significantly bowed. It is recommended that a structural engineer inspect the second floor framing that is supporting the stacks of books.

ELECTRICAL

The electrical system consists of an exterior 200A 120/208V 1ph GE main panel. This main panel serves the exterior HVAC system located next to it and a 100A 1ph Square D interior panel. The interior panel is located in a closet under the stairs.

There was no emergency lighting located in this building. It is recommended to add emergency wall packs and exit signs.

The lighting consists mainly of incandescent with some fluorescent type. It is recommended to change the lighting fixtures out to LED type. The lighting is controlled by typical toggle switches. It is recommended to add occupancy sensors to reduced energy consumption.

There is no fire alarm system in the building. There are some smoke detectors installed however.
MECHANICAL

The HVAC system was more emblematic of a residential type design. The building was provided with two (2) 3 ton, R-410A DX, split system, 80% efficient gas-fired Frigidaire furnaces and condensing units. The condensing units were located on grade at either end of the building. The equipment appeared to be in good working order. There was a furnace in the basement and one in the attic. The basement unit served the first floor through floor registers. The attic unit served the second floor through ceiling registers. No code required ventilation was provided to either unit. There were light switch activated ceiling exhaust fans in each toilet room. No humidification/dehumidification equipment or controls were observed and are important to storing books and paper.

It is recommended to investigate providing ventilation and humidification/dehumidification equipment if the building is to be occupied.

PLUMBING

The ¾” domestic water service has no backflow prevention. There is a Rheem 40 gallon electric water heater serving this facility. There is no expansion tank installed on the water heater. There are no thermostatic mixing valves installed on the domestic hot water system.

The lavatories have manual faucets. The water closets are flush tank type fixtures. The plumbing fixtures are in good condition.

There is a 1” low pressure natural gas service serving this facility. The gas meter and main shut-off valve is in the basement of this building.

The gutters and downspouts are in good condition.

It is recommended to install a backflow preventer on the main water service entrance. Install ASSE 1070 rated point-of-use thermostatic mixing valves under each lavatory to protect against scalding water temperatures. Install an expansion tank for the existing electric water heater.

FIRE PROTECTION

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building.
BACKGROUND

The main Nicholas County Campus building is located in Summersville, WV directly off of Rt. 19. The 11-acre campus consists of the main academic building and a faculty office building. The one-story 10,000 sqft building with a white brick façade was dedicated in 1986. A much needed 8,000 sf addition was completed in 1998. The building was originally built as the Nicholas County Center for Glenville State College.

The Nicholas County Campus houses several classrooms, two computer classrooms, a science lab, student commons area, as well as administration functions. The building’s materials consist of brick on the exterior, and concrete masonry unit walls and vinyl tile for the interior. The layout of the building is easy to navigate with classrooms flanking both sides of a central corridor. The faculty building was added to fill a need for faculty offices. This building sits adjacent to the parking lot and the western side of the main entrance.

This non-sprinklered building has not seen a significant renovation since initial construction. Although the wall and floor finishes are dated, the building is very well maintained. The original 1986 roof is in need of replacement.

BUILDING ENTRANCE

The main entrance is ADA accessible and ADA operators are available. The faculty office building has an ADA accessible ramp, but not ADA operators. Handicap parking is within close proximity to the entrance, and the entrance path is ADA accessible. The parking lot is in need of repaving.

It is suggested to continue the New River CTC branding by adding an exterior sign at the entrance that is in similar in quality and design to the Raleigh County Campus.

INTERIOR

The interior of the building has remained almost unchanged since initial construction. Some spaces have been reworked to accommodate new programs and functions. The finishes are dated, but have been maintained well. A student lounge is located in the rear corner of the building. The furnishings in the student lounge and waiting areas have not been updated. The interior signage is inconsistent throughout the building. Several stained ceilings tiles are present due to the deterioration of the roof.

CAMPUS FORUM

The comments about the Nicholas County Campus mainly consisted of the dislike of the faculty office building, the good location of the campus, and working on the data technology and IVN software for a smoother educational experience.
ELECTRICAL

The electrical system of the main building consists of a pad mounted transformer located behind the building that feeds a 1200A 120/208V 3ph GE main distribution panel on the interior of the back of the building. This main distribution panel then feeds several Square D and GE subpanels. The electrical system for the faculty trailer is fed from the same pad mounted trailer. There are two 150A 1ph Cutler Hammer loadcenters. The electrical systems for the main building and faculty trailer are both in good condition.

The emergency lighting in both spaces is handled with emergency wallpacks. Many of the exit signs also have integral emergency heads. Some of these exit sign power remote emergency heads on the exterior of the building.

The lighting in the main building is mostly recessed fluorescent type with surface mounted fluorescent lighting in the faculty trailer. There are some incandescent lighting on the exterior of the main building and faculty building. Both spaces have HID lighting in the parking lot and/or mounted on the building. The lighting is control by typical toggle switches in both spaces. It is recommended to add occupancy sensors to the main building to reduce energy cost. For the faculty trailer, occupancy sensors may be beneficial if the space is planned to be used by the college for an extended period of time. Wall mounted occupancy sensors in offices and restrooms may be the easiest to retrofit.

The fire alarm control panel in the main building is an EST Fireshield. This fire alarm control panel communicates with wall mounted and ceiling mounted notification devices and wall mounted pull stations. There is also remote annunciator panel at the main entrance. This system is not in need of any updates. The faculty trailer does not have a fire alarm system.

MECHANICAL

Main Campus Building

The facility was divided into two distinct spaces - the original building and an addition. The original building HVAC was mainly served by Trane packaged terminal air conditioners (PTAC). The PTAC units are mounted in the walls, typically beneath a window. The units are heat pump type air conditioners with supplemental electric heaters. Each unit has an exterior louver for heat transfer and the introduction of a small amount of ventilation air. Most spaces had a small, approximately 8"x24" transfer grille in the ceiling to allow pressurized ventilation air into the ceiling plenum and then released out the building through roof mounted relief air hoods. The PTACs and louvers all appeared to be newer and in good condition. Each PTAC was provided with a wall-mounted, 7 day programmable thermostat. The central portion of the original building was served by a Carrier, 5 ton, split system, DX fan coil unit. The fan coil unit was heat pump AC with supplemental electric heat. The condensing unit was located on the roof above. Supply air was ducted to each space.
and the return duct stubbed above the ceiling to a return air ceiling plenum. The fan coil unit was controlled by a wall-mounted, 7 day programmable thermostat and all equipment appeared to be newer and in good condition. The HVAC for the addition to the facility was mainly provided by ten (10) Carrier, 4-5 ton, packaged DX, gas heat roof top units. Low pressure gas piping served each unit and each unit had two isolation valves. Each unit was provided with a ventilation air intake hood. Only one unit appeared to be new and the rest appeared to be reaching the end of their expected service life. Units were designed to serve single classrooms, meeting room or a few, grouped office spaces. Supply air was ducted to each space and there was a return air ceiling plenum. Each RTU was provided with a wall-mounted, 7 day programmable thermostat. There was one exhaust fume hood with a dedicated exhaust fan operated by a switch at the fume hood. Certified testing and inspection was last performed in 1998. The exhaust ductwork inside and on the roof to the exhaust fan appeared to be galvanized with insulation on the exterior ductwork. The ductwork on the discharge of the exhaust fan appeared to be stainless steel. The utility set exhaust fan appeared to be aged, but was provided with the proper discharge plenum with guy wires. The main DATA/IT closet was provided with a small, non-commercial grade dedicated cooling unit with flexible ductwork transferring the heat to the ceiling plenum. The room also contained a diffuser from the RTU serving the adjacent classroom. That diffuser may provide heated air when the classroom is calling for heating, conflicting with the space dedicated AC unit.

The main Men’s and Women’s multi-user toilet rooms were served by one roof-mounted exhaust fan, ducted to each space and controlled by the light switch in the Men’s room. The exhaust fan was squealing and possibly in need of a belt change. We were unable to access the toilet rooms off the large conference room as it was occupied. Sidewall, ventilation exhaust was installed for the maintenance office/main electrical service room. Several, abandoned thermostats containing mercury were observed. Electric wall or ceiling heaters were observed at all main entrances to the facility.

It is recommended to budget for the replacement of the remaining 9 RTUs over the next few years and provide each RTU with full economizer cooling. Install a dedicated, wall mounted air conditioning unit for the main DATA/IT closet and remove the ceiling supply diffuser. Remove and properly dispose of all abandoned thermostats containing mercury. Clean and paint the gas pipe on the roof to extend its expected service life. Provide time clock control for the gang toilet

Faculty Office Trailer

There were two (2) packaged, exterior, wall-mounted BARD units serving the trailer. The units had ducted supply air and plenum return air, with one unit serving each side of the trailer. Each BARD unit was controlled by a wall-mounted, 7 day programmable thermostat. A stand-alone
dehumidifier was installed adjacent to the main printing station. The Men’s and Women’s bathrooms were provided with a light switch activated ceiling exhaust fan.

PLUMBING

Main Campus Building

The 1-1/2” domestic water service has no backflow prevention.

In each toilet at the main lobby entrance, there is a AO Smith 6 gallon electric water heater located under the countertop to serve two lavatories. There is no expansion tank installed on either water heater serving these areas. There are no thermostatic mixing valves installed on the hot water system. The relief valve piping for each water heater terminates inside the casework.

The main water heater that serves the facility, with the exception of the main lobby toilets, is an AO Smith 75 gallon gas water heater with an expansion tank. Currently, there is no hot water recirculation for this system. There are no thermostatic mixing valves installed on the hot water system.

All the water closets throughout the facility are flush tank type fixtures. All the lavatories have manual faucets as well as the break room sinks. The urinals have manual flush valves. The plumbing fixtures are in good condition.

The science lab classroom is equipped with a safety shower and an eye wash station. Each sink has a gooseneck type faucet with a gas cock. The branch sanitary piping serving the sinks is rated for acid-waste use. The sanitary lines associated with the lab sinks discharge into an in-floor acid neutralizing tank. There is a wall mounted emergency gas shut-off switch to turn off the gas supply to the classroom in case of an emergency. The underground branch gas lines routed to the science lab plumbing fixtures are routed inside a larger conduit, however these conduits are not sealed and vented to the outside.

The janitor sink in the main janitorial closet was previously served by an electric water heater that has been removed. There is only cold water piping connected to this fixture.

It is recommended to install a backflow preventer at the main water service entrance. Install an expansion tank for each water heater serving the main lobby toilets. Replace the water heaters serving the main lobby toilets with point-of-use instantaneous electric type water heaters located under each countertop and set the leaving hot water temperature to 105 degrees F. Replace the existing main water heater with a high-efficiency, condensing, modulating gas water heater. Set the leaving temperature of the new main water heater to 140 degrees F. (doing this will eliminate the threat of legionella growth in the system). Install ASSE 1070 rated point-of-use thermostatic mixing valves
throughout the facility at each plumbing fixture requiring hot water. Install ASSE 1071 rated emergency thermostatic mixing valves on all safety showers and eye wash stations throughout the facility. Install a hot water recirculation pump on the main domestic water heating system and modify the existing domestic hot water piping to loop it back to the new recirculation pump. The janitor sink located in the main janitorial closet needs a new branch domestic hot water line. This can be accomplished by extending the branch domestic hot water line from the fixture to the main domestic hot water line above the corridor ceiling.

Faculty Office Trailer

The ¾” domestic water service is fed from the Nicholas County Campus (NCC) facility’s water service. The NCC water service has no backflow prevention.

There is a Whirlpool 12 gallon electric water heater serving this facility. There is no expansion tank installed on the water heater. There are no thermostatic mixing valves installed on the domestic hot water system.

The lavatories have manual faucets. The water closets are flush tank type fixtures. The plumbing fixtures are in good condition.

It is recommended to install a backflow preventer on the main water service entrance at the Nicholas County Campus. Install ASSE 1070 rated point-of-use thermostatic mixing valves under each lavatory to protect against scalding water temperatures. Install an expansion tank for the existing electric water heater.

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.

FIRE PROTECTION

The facility is currently not sprinklered. Fire extinguishers were observed throughout the building. It is recommended to install a sprinkler system for the facility.
BACKGROUND

New River Community and Technical College leases space in a commercial area of Summersville with easy access from Rt. 19. The space occupies three storefronts in a strip mall at approximately 4,800 sqft.

The space consists of several classroom and office spaces, three private restrooms, storage, and support spaces. The space is sprinklered.

BUILDING ENTRANCE

New River CTC signage is located on the strip mall monument sign as well as on the building, making the building easy to find from the road. Additional signage from Rt. 19 would be helpful for visitors.

The strip mall parking lot has handicap spaces and the sidewalk and entrance to the one-story building are ADA accessible.

INTERIOR

The interior finishes are in good condition. The floor finishes include vinyl tile in the hallway, classrooms, and restrooms, and carpet in the offices. The walls are painted gypsum board and the ceilings are acoustical tile.

The front windows are single-pane glass which create an uncomfortable interior environment when in close proximity to the windows.

During the campus forums, several faculty mentioned the need for lab space in the Allied Health building.

ELECTRICAL

The Allied Health space has three 120/208V 3ph GE subpanels fed from a larger system in the overall building. These panels include two 125A and one 225A. One of these panels is located in a bathroom.

The emergency lighting is handled with emergency wallpacks. Many of the exit signs also have integral emergency heads.

The lighting in the Allied Health space is mostly recessed fluorescent type. HID type lighting is mounted on the exterior of the rear of the building and under the front canopy. The lighting is control by typical toggle switches. The addition of occupancy sensors may be beneficial if the space is planned to be used by the college for an extended period of time.

The Allied Health leased space has Edwards fire alarm devices that are part of an overall system located in a different space of the building. This system consist of wall mounted and ceiling mounted notification devices and wall mounted pull stations.
MECHANICAL

This is a leased space and access to mechanical equipment was limited. The tenant is occupying three spaces within a retail strip mall. Each of the three spaces has a packaged, DX cooling and gas heating roof top unit. Although tenant is occupying three spaces, there were only two active gas meters. It is assumed one meter is serving two RTUs, or one RTU does not have heat. RTUs have ducted supply air serving ceiling diffusers and the main return grilles were ducted to the unit. There were several open return grilles, but it is questionable if the space has a code-compliant plenum ceiling. Each RTU is provided with a wall-mounted, 7-day programmable thermostat. No electric heaters or supplemental heat was observed at the main entrances. Toilet rooms were provided with light switch activated ceiling exhaust fans.

It is recommended to poll your staff and students that frequent the location and determine what issues/complaints exist with the HVAC (hot, cold, drafty, etc.) at the facility and deal directly with the Landlord to resolve and improve. Speak to the woman near the main front door, sitting adjacent to single pane glass and needing to operate a small electric heater to maintain a normal space temperature.

PLUMBING

The water closets are flush tank type. The lavatories have manual faucets. All plumbing fixtures are in good working condition. There are no thermostatic mixing valves on the lavatories.

It is recommended to install thermostatic mixing valves on all plumbing fixtures requiring hot water.

FIRE PROTECTION

The building has a complete fire protection sprinkler system.
ENROLLMENT AND DEMOGRAPHIC ASSESSMENT

ENROLLMENT

Enrollment has declined in recent years, and is projected to remain near the current enrollment until 2020. Particularly, the full time enrollment of high school students, prisoners, and special students has declined since its peak in 2012-2013. The majority of Community and Technical Colleges in the state of West Virginia have seen a decline since 2010.

When looking at enrollment by location, several locations have seen an increase in enrollment. The Mercer County Campus and the Advanced Technology Center in Ghent have seen an increase in student population. The Greenbrier Valley Campus and the Nicholas County Campus both have declined in their contribution to the total enrollment. The Raleigh County Campus has remained steady.

DEMOGRAPHIC ASSESSMENT

New River CTC is a gateway for both traditional and non-traditional age students. Partnering with programs like the Workforce training programs allows the College to attract non-traditional students who are seeking a certification with an accelerated technical program. New River CTC provides access to students that are currently underserved by the four-year colleges.

ADDITIONAL GROWTH AREAS

On-line programs will continue to be growth areas for the college, creating the need for more state-of-the-art distance learning facilities and support spaces. The data networks and infrastructure at each physical location will need to stay current to ensure secure and quick access for online students.

SUMMARY

As the projected enrollment in upcoming years is lower than the enrollment previously supported by the campus, the focus of the Campus Development Plan is to maintain and improve their existing facilities, while sustaining a continued effort for increased enrollment.

Below is the past Annual Headcount Enrollment by year:

<table>
<thead>
<tr>
<th>Year</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>------</td>
</tr>
<tr>
<td>2014</td>
<td>2,879</td>
</tr>
<tr>
<td>2013</td>
<td>3,885</td>
</tr>
<tr>
<td>2012</td>
<td>4,315</td>
</tr>
<tr>
<td>2011</td>
<td>4,682</td>
</tr>
<tr>
<td>2010</td>
<td>4,268</td>
</tr>
</tbody>
</table>

Attached is additional enrollment information provided by New River CTC, which categorizes enrollment by campus.
Below are the projections for Spring plus Fall enrollment of distinct student counts and for financial FTE based on 12 credit hour load as a full-time student. These projections assume the number of incoming students and our retention rates will remain steady over the coming years. Historical data for dual enrollment, Prison, and other “Special” students and enrollment during summer terms are reported separately on the following page. The impact of retention initiatives and new programs such as Medical Laboratory Technology, Culinary Arts, Massage Therapy, and Registered Nursing are not considered.

*Assumptions: 1) Retention from Spring to Fall and Fall to Spring equal the respective three year averages (2013-15) of these values going forward, 2) New First-time Freshman, Re-admit, Transfer and Transient Student counts remain the same as those in the respective semesters of 2015-16. 3) FTE to distinct students ratio is .895 for Fall and .875 for Spring as occurred during the 2015-16 academic year.
FTE* of High School, Prison, and Special Students Only

- **FTE** = count of full-time students + (part-time student billed credits/12)
- **2015-16** values do not include summer enrollment

FTE* Summer Terms

- **FTE** = count of full-time students + (part-time student billed credits/12)
<table>
<thead>
<tr>
<th>Campus</th>
<th>UNPAID HEADCOUNT</th>
<th>PAID HEADCOUNT</th>
<th>TOTAL HEADCOUNT</th>
<th>UNPAID FTE</th>
<th>PAID FTE</th>
<th>TOTAL FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVC Arts and Sciences Bldg</td>
<td></td>
<td>59.0</td>
<td>59.0</td>
<td>0.0</td>
<td>14.2</td>
<td>14.2</td>
</tr>
<tr>
<td>Nicholas Main Campus</td>
<td>2.0</td>
<td>185.0</td>
<td>191.0</td>
<td>3.3</td>
<td>109.7</td>
<td>113.1</td>
</tr>
<tr>
<td>Raleigh Main Campus</td>
<td>4.0</td>
<td>381.0</td>
<td>386.0</td>
<td>4.3</td>
<td>209.7</td>
<td>214.0</td>
</tr>
<tr>
<td>Nicholas Cty Workforce Center</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
<td>0.0</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Greenbrier West High School</td>
<td>11.0</td>
<td>129.0</td>
<td>129.0</td>
<td>2.2</td>
<td>79.5</td>
<td>79.5</td>
</tr>
<tr>
<td>Mercer Main Campus</td>
<td></td>
<td>35.0</td>
<td>38.0</td>
<td>1.1</td>
<td>27.3</td>
<td>28.3</td>
</tr>
<tr>
<td>Houfnaggle Technology Center</td>
<td>7.0</td>
<td>87.0</td>
<td>95.0</td>
<td>6.6</td>
<td>73.3</td>
<td>79.9</td>
</tr>
<tr>
<td>Advanced Technology Cntr-Ghent</td>
<td></td>
<td>15.0</td>
<td>15.0</td>
<td>0.0</td>
<td>14.6</td>
<td>14.6</td>
</tr>
<tr>
<td>Web Courses (All Campuses)</td>
<td>2.0</td>
<td>837.0</td>
<td>841.0</td>
<td>1.9</td>
<td>343.3</td>
<td>345.2</td>
</tr>
<tr>
<td>One Room University-Pocahontas</td>
<td></td>
<td>10.0</td>
<td>10.0</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

NOTE: Data are based on the student's “home campus” meaning that regardless of where the course is delivered the home campus receives the headcount. The script Enrollment by Delivery Location is not based on home campus. Conditional formatting has been applied so that cells colored yellow have values between 1.0 and 9.9 and cells colored red have values less than 1.0.
<table>
<thead>
<tr>
<th>Institution</th>
<th>UNPAID_HEADCOUNT</th>
<th>TOTAL_HEADCOUNT</th>
<th>UNPAID_FTE</th>
<th>PAID_FTE</th>
<th>TOTAL_FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Monroe High School</td>
<td>15.0</td>
<td>15.0</td>
<td>0.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Education Cntr Rehab Services</td>
<td>41.0</td>
<td>41.0</td>
<td>0.0</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Lee Street Complex</td>
<td>1.0</td>
<td>28.0</td>
<td>0.9</td>
<td>13.9</td>
<td>14.8</td>
</tr>
<tr>
<td>Fed Corr Ins - Beckley</td>
<td>35.0</td>
<td>35.0</td>
<td>20.8</td>
<td>0.0</td>
<td>20.8</td>
</tr>
<tr>
<td>Lewisburg Main Campus</td>
<td>315.0</td>
<td>315.0</td>
<td>0.0</td>
<td>177.1</td>
<td>177.1</td>
</tr>
<tr>
<td>Greenbrier East High School</td>
<td>49.0</td>
<td>49.0</td>
<td>0.0</td>
<td>9.8</td>
<td>9.8</td>
</tr>
</tbody>
</table>

201602 Total:

| | 63 | 2,190 | 2,263 | 41 | 1,103 | 1,144 |

NOTE: Data are based on the student’s "home campus" meaning that regardless of where the course is delivered the home campus receives the headcount. The script Enrollment by Delivery Location is not based on home campus. Conditional formatting has been applied so that cells colored yellow have values between 1.0 and 9.9 and cells colored red have values less than 1.0.

Date Created: 3/2/2016 Time Created: 10:47:43 AM
<table>
<thead>
<tr>
<th>Location</th>
<th>FY</th>
<th>Term</th>
<th>Total Headcount</th>
<th>Total FTE</th>
<th>FY Total Headcount</th>
<th>FY Total FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Technology Center - Ghent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td>172</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201601 - Fall 2015</td>
<td>75</td>
<td>60.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201602 - Spring 2016</td>
<td>97</td>
<td>81.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201603 - 1st Summer 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201404 - 2nd Summer 2014</td>
<td>0</td>
<td>0</td>
<td>156</td>
<td>118.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201501 - Fall 2014</td>
<td>74</td>
<td>59.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201502 - Spring 2015</td>
<td>56</td>
<td>44.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201503 - 1st Summer 2015</td>
<td>26</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201304 - 2nd Summer 2013</td>
<td>0</td>
<td>0</td>
<td>144</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201401 - Fall 2013</td>
<td>82</td>
<td>50.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201402 - Spring 2014</td>
<td>55</td>
<td>44.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>26.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201601 - Fall 2015</td>
<td>16</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201602 - Spring 2016</td>
<td>15</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201603 - 1st Summer 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201404 - 2nd Summer 2014</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>46.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201501 - Fall 2014</td>
<td>11</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201502 - Spring 2015</td>
<td>10</td>
<td>20.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201503 - 1st Summer 2015</td>
<td>8</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201304 - 2nd Summer 2013</td>
<td>0</td>
<td>0</td>
<td>68</td>
<td>103.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201401 - Fall 2013</td>
<td>37</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201402 - Spring 2014</td>
<td>16</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201403 - 1st Summer 2014</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education Cntr Rehab Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>41.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201601 - Fall 2015</td>
<td>53</td>
<td>22.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201602 - Spring 2016</td>
<td>41</td>
<td>19.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201603 - 1st Summer 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201404 - 2nd Summer 2014</td>
<td>0</td>
<td>0</td>
<td>85</td>
<td>34.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201501 - Fall 2014</td>
<td>70</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201502 - Spring 2015</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201503 - 1st Summer 2015</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201304 - 2nd Summer 2013</td>
<td>0</td>
<td>0</td>
<td>102</td>
<td>40.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201401 - Fall 2013</td>
<td>29</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201402 - Spring 2014</td>
<td>73</td>
<td>32.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201403 - 1st Summer 2014</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed Corr Ins - Beckley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>43.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201601 - Fall 2015</td>
<td>56</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201602 - Spring 2016</td>
<td>35</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201603 - 1st Summer 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201404 - 2nd Summer 2014</td>
<td>0</td>
<td>0</td>
<td>143</td>
<td>72.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201501 - Fall 2014</td>
<td>39</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201502 - Spring 2015</td>
<td>62</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201503 - 1st Summer 2015</td>
<td>42</td>
<td>24.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201304 - 2nd Summer 2013</td>
<td>0</td>
<td>0</td>
<td>133</td>
<td>52.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201401 - Fall 2013</td>
<td>69</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201402 - Spring 2014</td>
<td>48</td>
<td>23.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201403 - 1st Summer 2014</td>
<td>16</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2016-16</td>
<td>201504 - 2nd Summer 2015</td>
<td>62</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201504 - 2nd Summer 2015</td>
<td>201504 - 2nd Summer 2014</td>
<td>201504 - 2nd Summer 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201601 - Fall 2015</td>
<td>201501 - Fall 2014</td>
<td>201401 - Fall 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>155</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201602 - Spring 2016</td>
<td>201502 - Spring 2015</td>
<td>201402 - Spring 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>13.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201603 - 1st Summer 2016</td>
<td>201503 - 1st Summer 2015</td>
<td>201403 - 1st Summer 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.8</td>
<td>20.2</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201604 - 2nd Summer 2014</td>
<td>201504 - 2nd Summer 2013</td>
<td>201504 - 2nd Summer 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201501 - Fall 2014</td>
<td>201501 - Fall 2013</td>
<td>201501 - Fall 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>13.6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201602 - Spring 2015</td>
<td>201502 - Spring 2014</td>
<td>201502 - Spring 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>6.6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201603 - 1st Summer 2016</td>
<td>201503 - 1st Summer 2015</td>
<td>201503 - 1st Summer 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201604 - 2nd Summer 2014</td>
<td>201504 - 2nd Summer 2013</td>
<td>201504 - 2nd Summer 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201501 - Fall 2014</td>
<td>201501 - Fall 2013</td>
<td>201501 - Fall 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>3.2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201602 - Spring 2015</td>
<td>201502 - Spring 2014</td>
<td>201502 - Spring 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1.8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201603 - 1st Summer 2016</td>
<td>201503 - 1st Summer 2015</td>
<td>201503 - 1st Summer 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201604 - 2nd Summer 2014</td>
<td>201504 - 2nd Summer 2013</td>
<td>201504 - 2nd Summer 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201501 - Fall 2014</td>
<td>201501 - Fall 2013</td>
<td>201501 - Fall 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201602 - Spring 2015</td>
<td>201502 - Spring 2014</td>
<td>201502 - Spring 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201603 - 1st Summer 2016</td>
<td>201503 - 1st Summer 2015</td>
<td>201503 - 1st Summer 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201604 - 2nd Summer 2014</td>
<td>201504 - 2nd Summer 2013</td>
<td>201504 - 2nd Summer 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201501 - Fall 2014</td>
<td>201501 - Fall 2013</td>
<td>201501 - Fall 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201602 - Spring 2015</td>
<td>201502 - Spring 2014</td>
<td>201502 - Spring 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201603 - 1st Summer 2016</td>
<td>201503 - 1st Summer 2015</td>
<td>201503 - 1st Summer 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201604 - 2nd Summer 2014</td>
<td>201504 - 2nd Summer 2013</td>
<td>201504 - 2nd Summer 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201501 - Fall 2014</td>
<td>201501 - Fall 2013</td>
<td>201501 - Fall 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201602 - Spring 2015</td>
<td>201502 - Spring 2014</td>
<td>201502 - Spring 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201603 - 1st Summer 2016</td>
<td>201503 - 1st Summer 2015</td>
<td>201503 - 1st Summer 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Houffaggle Technology Center</td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201404 - 2nd Summer 2014</td>
<td>10</td>
<td>4</td>
<td>124</td>
<td>86.2</td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201401 - Fall 2015</td>
<td>58</td>
<td>42</td>
<td>147</td>
<td>102.2</td>
</tr>
<tr>
<td></td>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td>201401 - Fall 2015</td>
<td>11</td>
<td>2.2</td>
<td>14</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201402 - Spring 2014</td>
<td>59</td>
<td>39.4</td>
<td>89</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201402 - Spring 2014</td>
<td>56</td>
<td>40.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201403 - 1st Summer 2014</td>
<td>6</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>James Monroe High School</td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201404 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201501 - Fall 2015</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td>201501 - Fall 2015</td>
<td>0</td>
<td>0</td>
<td>351</td>
<td>190.5</td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201502 - Spring 2015</td>
<td>14</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201503 - 1st Summer 2015</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td>530</td>
<td>253.3</td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201601 - Fall 2015</td>
<td>11</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201602 - Spring 2016</td>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201603 - 1st Summer 2016</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td>201603 - 1st Summer 2016</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201404 - 2nd Summer 2014</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201501 - Fall 2014</td>
<td>183</td>
<td>83.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201502 - Spring 2015</td>
<td>152</td>
<td>82.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201503 - 1st Summer 2015</td>
<td>16</td>
<td>24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td>655</td>
<td>359.2</td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201601 - Fall 2015</td>
<td>340</td>
<td>182.1</td>
<td>821</td>
<td>457.8</td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201602 - Spring 2016</td>
<td>315</td>
<td>177.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201603 - 1st Summer 2016</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201401 - Fall 2013</td>
<td>320</td>
<td>140.1</td>
<td>1089</td>
<td>590.2</td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201402 - Spring 2014</td>
<td>183</td>
<td>84.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201403 - 1st Summer 2014</td>
<td>27</td>
<td>29.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td>201404 - 2nd Summer 2014</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201501 - Fall 2014</td>
<td>416</td>
<td>236.7</td>
<td>273</td>
<td>166.4</td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201502 - Spring 2015</td>
<td>352</td>
<td>193.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201504 - 2nd Summer 2015</td>
<td>19</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201504 - 2nd Summer 2015</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201601 - Fall 2015</td>
<td>144</td>
<td>86.9</td>
<td>297</td>
<td>176.3</td>
</tr>
<tr>
<td></td>
<td>FY2014-15 July 1, 2014 to June 30, 2015</td>
<td>201602 - Spring 2016</td>
<td>129</td>
<td>79.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2013-14 July 1, 2013 to June 30, 2014</td>
<td>201603 - 1st Summer 2016</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY2015-16 July 1, 2015 to June 30, 2016</td>
<td>201502 - Spring 2015</td>
<td>133</td>
<td>80.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>July 1, 2013 to June 30, 2014</td>
<td>Nicolas Cty Workforce Center</td>
<td>Raleigh Main Campus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2013-14</td>
<td>18</td>
<td>267</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2014-15</td>
<td>50</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-16</td>
<td>12</td>
<td>234</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-17</td>
<td>733</td>
<td>459.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-18</td>
<td>34</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-19</td>
<td>61</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY2015-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY</td>
<td>2nd Summer 2015</td>
<td>Fall 2015</td>
<td>Spring 2016</td>
<td>1st Summer 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015-16</td>
<td>91</td>
<td>714</td>
<td>839</td>
<td>1644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015-16</td>
<td>16.4</td>
<td>304.3</td>
<td>344</td>
<td>676.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-15</td>
<td>65</td>
<td>298</td>
<td>344.4</td>
<td>1852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-15</td>
<td>16.9</td>
<td>719.7</td>
<td>60.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-14</td>
<td>63</td>
<td>282.8</td>
<td>320.3</td>
<td>1785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-14</td>
<td>16.9</td>
<td>700.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEFERRED MAINTENANCE PROJECTS

Below is a comprehensive list of deferred maintenance projects at New River CTC that has been supplied by the Director of Facilities.

GREENBRIER VALLEY CAMPUS

- Main Building: Boiler #1 Repair
- Lee Street Complex Building A: Steam Boiler Replacement
- Art/Science Building: Back parking lot and Additional exterior lighting
- Maintenance Preventative contracts on elevators and heating/AC Units

MERCER COUNTY CAMPUS

- Main Campus Building: Lower Floor remodeled, enclosure of maintenance room in reference to fire resistance and smoke access
- Exterior parking lot lighting repaired/replaced.
- Elevator inspection and pump access for front elevator
- Maintenance Preventative contracts on elevators and heating/AC Units

NICHOLAS COUNTY CAMPUS

- Main Campus Building Roof Repair/Replacement
- Parking Lot Repairs: Main Campus Building front lot
- Main Campus: Back Door and Exterior sidewalk/pad: Needs replaced
- Maintenance Preventative contracts on heating/AC Units

RALEIGH COUNTY CAMPUS

- USDA Building: Fire Suppression System repairs, Water line repairs, general clean up/paint, and Conference Room restroom pumping system needs repaired.
- Main Campus: Back entrance exterior lighting needed for back sidewalk
- Maintenance Preventative contracts on elevator and heating/AC Units
EXISTING BUILDING NEEDS

Below is a comprehensive list of buildings needs at New River Community and Technical College for each facility that was assessed. The cost estimate supplied for each building includes overhead and profit for the general contractor plus a small contingency. This price reflects the amount needed to bring the building up to current codes and to the quality which is standard of a Higher Education campus building.

<table>
<thead>
<tr>
<th>Campus</th>
<th>SF</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raleigh County Campus</td>
<td>50,000</td>
<td>$127,000</td>
</tr>
<tr>
<td>□ Student Lounge Furniture ($100,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ ASSE 1070 valves on all lavatories and sinks ($12,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Rear entrance exterior lighting ($15,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Technology Center</td>
<td>93,000</td>
<td>$769,000</td>
</tr>
<tr>
<td>□ Roof Repair ($80,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Improved Lighting in Welding Shop ($2,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Emergency Lighting in Welding Shop ($500)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Minimal Automatic Lighting Controls ($1,500)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Elevator ($400,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ New fire pump and tank ($200,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Domestic backflow preventer ($3,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Domestic recirculation pump and associated piping ($5,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Domestic water heater expansion tank ($1,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ ASSE 1070 valves on all lavatories and sinks ($6,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ ASSE 1070 valves on all lavatories and sinks ($12,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Parking Lot Pavement/Lighting ($60,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Security Gate ($10,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicholas County Campus</td>
<td>18,000</td>
<td>$2,136,500</td>
</tr>
<tr>
<td>□ Building Addition ($1,300,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Roof Replacement ($300,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ FF&E Upgrade ($75,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Minor Exterior Lighting Upgrades ($500)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Automatic Lighting Controls ($3,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ RTU Replacement - $35,000 per RTU ($315,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ DATA/IT dedicated cooling unit ($25,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Domestic Backflow Preventer ($2,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ High efficient gas water heater ($10,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ ASSE 1070 valves on all lavatories and sinks ($12,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Domestic recirculation pump and associated piping ($5,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Instantaneous point-of-use water heaters in lobby ($7,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Sprinkler system ($72,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Parking Lot Repairs ($10,000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mercer County Campus 18,500 SF $2,248,000
- Interior Renovation ($1,200,000)
- Exterior Lighting/Improvements ($800,000)
- Elevator Telephone Lines ($1,000)
- FF&E Upgrade ($45,000)
- Lighting Efficiency Upgrades ($30,000)
- Automatic Lighting Controls ($5,000)
- Domestic Backflow Preventer ($2,000)
- High efficient gas water heater ($10,000)
- ASSE 1070 valves on all lavatories and sinks ($6,000)
- Sprinkler system ($148,000)
- Roof Drain Strainers ($1,000)

Art & Sciences Building 30,000 SF $286,000
- Purchase Furniture ($75,000)
- UV paint on exterior insulation ($4000)
- Make-up air unit for the Kitchen ($175,000)
- ASSE 1070 valves on all lavatories and sinks ($12,000)
- Acid neutralizing tank for dark room sinks ($5,000)
- Exterior Lighting ($15,000)

Greenbrier Hall 48,000 SF $494,000
- Minor Lighting Updates ($3,000)
- Automatic Lighting Controls ($15,000)
- High efficient gas water heater ($10,000)
- ASSE 1070 valves on all lavatories and sinks ($12,000)
- High efficient gas water heater ($10,000)
- Sump pump ($5,000)
- Cosmetology code-required exhaust ($30,000)
- Air Handling Unit Repairs ($30,000)
- Boiler Replacement ($100,000)
- Chiller Replacement ($275,000)

Machine Tool Technology Center 6,000 SF $635,500
- ADA Accessibility/Elevator ($500,000)
- Additional Emergency Lighting ($1,000)
- Automatic Lighting Controls in Limited Spaces ($500)
- Proper welding exhaust ($75,000)
- Domestic Backflow Preventer ($2,000)
- ASSE 1070 valves on all lavatories and sinks ($6,000)
- Domestic recirculation pump and associated piping ($5,000)
- Domestic water heater expansion tanks ($2,000)
- Replace PVC domestic water piping with copper ($20,000)
- Sprinkler system ($24,000)
*USDA Property

<table>
<thead>
<tr>
<th>Description</th>
<th>Area</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handicapped Parking ($20,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Replacement ($300,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Renovation, including Mold Investigation ($1,000,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Lighting Equipment including Generator Replacement ($55,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting Controls ($10,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handicapped Parking ($20,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Replacement ($300,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Renovation, including Mold Investigation ($1,000,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Lighting Equipment including Generator Replacement ($55,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting Controls ($10,000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The price for this property does not include the price of renovations to accommodate new programs at this location. The price reflects the amount needed to bring the building up to the current codes and to the quality standard of a Higher Education campus building.
MAJOR SITE IMPROVEMENTS

CIRCULATION OVERVIEW

New River Community and Technical College is a commuter college, so the primary focus is vehicular circulation. Pedestrian circulation is generally limited to parking a car in close proximity to the academic building and walking on the sidewalk to the main entrance. For this reason, our main focus is on Vehicular Circulation.

Permanent directional wayfinding signage is needed at all campus locations. Several locations have directional signs on the main access road, but secondary directional signs are needed to keep visitors on the correct path. Mercer County Campus is in great need of directional wayfinding signage.

A new campus entry feature will be installed at each campus near its entrance. The entry feature will create a gateway feature onto campus and would consist of signage, landscaping, and a change in masonry material to reflect the aesthetic at each location. This will provide the visitor with a familiar place mark that is associated with New River CTC.

SITE IMPROVEMENTS

Mercer County Campus - The previous use of the Mercer County Campus building was a bank. The drive-thru structure should be demolished. The parking lot in that area should be regraded and restriped to help engage the lower level of the building, should it ever be renovated into classrooms and faculty offices.
Advanced Technology Center – The current parking lot of the Advanced Technology Center is gravel with minimal Exterior Lighting. The site improvements at this location would include paving the remainder of the parking and adding exterior lighting. A security gate at the entrance would keep unwanted visitors away during closed business hours.

Nicholas County Campus – The front parking lot is in need of repairs.

Raleigh County Campus – The rear entrance to this building needs upgraded Exterior Lighting.

Arts & Sciences Building – Additional Exterior Lighting overall and in the rear parking lot is needed.
INFRASTRUCTURE IMPROVEMENTS

GAS SERVICE

Most of the buildings owned by New River CTC currently have gas service. The properties that do not are:

Machine Tool Technology Center
Beckley Center for Rehabilitation Services

WATER SERVICE

There are currently several buildings owned by New River CTC that do not have a sprinkler system. These properties are:

Nicholas County Campus
Mercer County Campus
Machine Tool Technology Center
USDA Property

The fire pump at the Advanced Technology Center needs replaced. This building has a fire pump which is in a dedicated room outside of the facility. The fire pump gets its water from a pond that is adjacent to the fire pump building. The fire pump building has a sump pump that is currently not working. It is recommended that the fire pump be replaced as well as the sump pump in the pit. A fire water tank shall be installed for the fire system water source. The existing fire protection piping shall be inspected to determine if the pond water has deteriorated the interior of the piping. If it has, it will need to be replaced.

ELECTRIC SERVICE

The electric service for the Welding Shop at the Advanced Technology Center in Ghent is fed from a sub panel from the main building. Welding machines can use a lot of electricity for short periods of time. There were around 8 welding stations. At the current time of our building assessment, the circuit breaker has not tripped. There may be a future need for an upgrade in feeder size from the main building to serve the welding shop or for the welding shop to get its own service.

At the Campus Forum held at the Nicholas County Campus, several faculty and students mentioned problems with the data network and internet service. It is advised to assess the current facility’s data needs.
New River Community and Technical College is not currently pursuing the acquisition of new properties. The College has plans to consolidate their properties over the next several years. The following properties are planned to be consolidated:

1. The Allied Health Nursing Program building will be consolidated into the main Nicholas County Campus Building.

2. In Greenbrier County, the Lee Street Complex will not be utilized and all programs will be moved to the Arts & Sciences Building. The rented Library building will be vacated. Options include moving the Library to another building, or utilizing space in the adjacent Greenbrier County Public Library. The existing Machine Tool Technology Center will be vacated and a new Advanced Technology Center in Lewisburg will be built on approximately 5 acres of the Salisbury Farm. The remainder of the Salisbury Farm will be sold, pending review of the Deed Restrictions.

3. In Raleigh County, the Beckley Center for Rehabilitation Services was vacated in June 2016 and those services were moved to the main Raleigh County Campus building. An evaluation of future programs to be held at the USDA Property will be conducted, and the future of this property will be decided at that time.

The goal of consolidating these properties is to relieve New River CTC of the cost and responsibility of maintaining buildings that are currently being underutilized.
NEW FACILITIES AND BUILDING SITES

Although New River Community and Technical College’s main focus over the next ten years is to consolidate facilities and work on deferred maintenance of existing buildings, the Master Plan designates two new construction projects. The projects include a New Advanced Technology Center in Lewisburg, and an addition to the Nicholas County Campus. These projects are listed for long range planning purposes.

1. ADVANCED TECHNOLOGY CENTER IN LEWISBURG (25,000 SF) - $7.5M

This New Advanced Technology Center in Lewisburg will replace the leased Machine Tool Technology Center on Houfnoggl Rd which is in great need of a significant renovation to bring the building up to a Higher Education quality. The new building will be located on a portion of the Salisbury Farm, which is already owned by the College.

The new building will comprise of classrooms and offices toward the front of the building with the high-bay Garage spaces toward the rear of the building. The high-bay Garage spaces will be designed with movable partitions which will allow flexibility with proposed programs.
2. ADDITION TO NICHOLAS COUNTY CAMPUS (6,000 SF) - $1.3M

The addition to the Nicholas County Campus main building will replace the Faculty Office trailer and the Allied Health leased space. The approximate 6,000 sf addition will comprise of faculty offices, classroom space, and two laboratory classrooms. The new addition will create a courtyard around the current administration offices, and a secondary entrance will be located off the rear parking lot.
The main priority of New River CTC over the next ten years will be to focus on the efficient use of buildings and resources and to focus on the deferred maintenance of the existing buildings.

PROPOSED IMPROVEMENTS

Greenbrier Valley Campus – Maintain

Arts and Sciences Building – Maintain

Lee Street Complex – Vacate. Move programs to Arts & Science Building.

Salisbury Farm – Approximately 5 acres will be used for the New Advanced Technology Center. The Deed Restrictions will be reviewed and the remainder of property will be sold if the deed allows.

Library (old Pink) – Vacate

Nicholas County Campus – Maintain. Plan for 6,000 sf Addition.

- Faculty Office Trailer – Vacate. Move to new Addition.

Mercer County Campus – Prior to making any investments into the facility, New River CTC will examine the long-term viability of continuing to lease the Mercer County Campus.

Raleigh County Campus – Maintain

USDA Property – Within the next year New River CTC will conduct an additional investigation into the viability and need for the USDA facility, which will include both a programmatic and economic analysis. If the analysis does not support the need for the facility, it will be disposed of as permitted by the agreement with the USDA.

Beckley Center for Rehab Services – Vacated in May 2016.

Advanced Technology Center – Within the next year New River CTC will evaluate the needs of Center and compare the needs and programs with the future use of the USDA property.

NEW CONSTRUCTION PROJECTS

- Addition to Nicholas County Campus
- New Advanced Technology Center in Lewisburg

SITE ENHANCEMENTS

- New Entrance Signage at each campus location
TIMING, PHASING, AND PROJECTED COSTS

In order for the Master Plan to be appropriately implemented and funded over time, timing estimates with associated costs were identified. These estimates provide a sequence of construction, allowing capital projects to be built to accommodate the ongoing needs New River Community and Technical College. The planned projects have been identified starting with immediate needs and include proposed construction through 2024. The estimated scheduling for capital projects assume that funding strategies will begin in 2016. The estimated scheduling also assumes that the Master Plan will be implemented in multiple steps to allow for ongoing operations and reduced interruption of activities on the campuses. The project sequencing reflects the findings of the enrollment and space projections.

PROJECTED COSTS

While several deferred maintenance and code-compliance projects were outlined in Section 4 ‘Existing Building Needs,’ outlined below are deferred maintenance projects that are necessary for building operation. Identified are the list of capital projects in order of priority and their associated order of magnitude costs.

Phase 1: 2017
1. Nicholas County Campus - Roof Replacement
 Cost: $300,000
2. Advanced Technology Center – Roof Repair
 Cost: $80,000

Phase 2: 2018-2019
3. Greenbrier Hall – Boiler Replacement
 Cost: $100,000
4. Nicholas County Campus – Parking Lot Repairs
 Cost: $10,000
5. Advanced Technology Center – New Fire Pump/Tank
 Cost: $200,000
6. General Deferred Maintenance Projects
 Cost: $500,000

Phase 3: 2020-2022
7. Addition to Nicholas County Campus
 Cost: $1,300,000
8. Site Improvements – Entrance Signage at all Campuses
 Cost: $500,000
9. General Deferred Maintenance Projects
 Cost: $500,000

Phase 4: 2023-2026
10. New Advanced Technology Center in Lewisburg
 Cost: $7,500,000

TOTAL INVESTMENT
Cost: $10,990,000
CAMPUS INTERACTION and SUPPORT

Campus Forums were held at each main campus location: Raleigh County Campus, Nicholas County Campus, Mercer County Campus, and Greenbrier Valley Campus. The feedback from these forums aided the development of this Master Plan. Below is a synopsis of each Campus Forum. The meeting minutes from each forum are also included.

RALEIGH COUNTY CAMPUS

Being the newest building of New River CTC, the participants at this forum were grateful for the new building and new technology. Several classes are now taught through IVN (Interface Video Network) and this campus’ new technology works well for this application. The staff liked how efficient the building is with all the employees under one roof. Several attendees brought up the need for more campus recognition signs and directional wayfinding signage. The building is sometimes confused with the Erma Byrd Center, and once a visitor has exited off of I-64, more directional wayfinding signage is needed to get to the New River CTC building. When the building was completed in 2014, the construction team had to value engineer out several of the furnishings and fixtures. Because of this, student lounge furniture is high on the priority list.

NICHOLAS COUNTY CAMPUS

The Nicholas County forum was well attended by faculty, staff, and students. The faculty feel that the faculty office building is not an adequate option for faculty offices. They feel it prevents student/faculty interaction and would like to have offices in the building. They like the location of the building with easy access to shops and restaurants. The building is situated directly off Rt. 19 and is adjacent to the public library. The wooded lot provides a well landscaped atmosphere. The maintenance crew that attended mentioned that the original roof is in need of replacement. The students mentioned the difficulty of using the online programs for submitted assignments and the IVN classes have been problematic at this location. All in attendance would like to bring the Allied Health program to the main building with the proper chemistry and biology labs.

MERCER COUNTY CAMPUS

The participants had several positive statements about this location. This building is in a great location near the center of town and close to several amenities, including the local public library. The building is an open layout which allows for much student and faculty interaction. But, the open layout also means that several of the spaces do not have the proper acoustical treatments. An open classroom in the middle of the space needs minor renovations to close off the space for privacy. Although the building has a “warm” atmosphere, an interior renovation will be required to make the old bank building feel like a Higher Education Building. Several participants mentioned the potential to expand into the lower floor if needed. More directional signage from the interstate would be beneficial.
GREENBRIER VALLEY CAMPUS

The members of this forum loved the attractive buildings of this campus, and how centrally located the buildings are in the downtown fabric. The several underutilized buildings were a main topic of discussion: Lee Street Complex and the Art & Science building. They would like to see better signage to find the buildings around Lewisburg. Also, they feel that some of their properties allow for an expansion of programs like agriculture, electrical, mechanical, and masonry.
IMPACT ON LOCAL COMMUNITY

With the implementation of the Master Plan, New River Community and Technical College’s campus communities will derive positive benefits.

Input was collected from the respective Master Plan Committees for each campus. Open meetings were held, publications outlined plans, and a New River CTC Board of Governor’s Meeting was used to communicate the vision to multiple constituencies.

Consolidating buildings and increasing ground and highway signage will make it easier for visitors to locate the campuses of New River CTC.

In Lewisburg, The Lee Street Complex is currently hard to locate, and does not have the quality that is expected of a Higher Education building. By moving the programs from the Lee Street Complex to the Kyle and Ann Fort Arts and Science Building, more students, faculty, and community members will be able to congregate in the newly renovated, state-of-the-art facility. Vacating the Machine Tool Technology Center on Houfnoggle Road and moving into a new Advanced Technology Center will attract and educate new students in an area of West Virginia that can greatly benefit from Workforce training programs.
WV Council for Community and Technical Education
Meeting of October 20, 2016

ITEM: Statewide College Access and Success Initiatives Report

INSTITUTIONS: All

RECOMMENDED RESOLUTION: Information Item

STAFF MEMBER: Adam Green

BACKGROUND:

The Division of Student Affairs coordinates several projects aimed at assisting students in navigating college processes and pathways. Staff will provide an update on upcoming college access and student success initiatives, including the following:

College Planning Pathway Events: Through its College Foundation of West Virginia (CFWV) outreach initiative, the Division of Student Affairs coordinates three annual statewide college planning pathway events to assist families in planning, applying, paying, and preparing for postsecondary programs. The first event, “College Application and Exploration Week,” is being held in schools across the state from October 31 through November 4, 2016 and focuses on helping students explore postsecondary options and submit applications.

The second series of events include multiple financial aid awareness and assistance events that will help families complete financial aid application forms including the Free Application for Federal Student Aid (FAFSA). Additionally, through a grant funded by the National College Access Network, Council staff are working closely with Kanawha County high schools to pilot a series of unique financial aid and FAFSA completion interventions.

The third event, College Decision Day, will be held during the month of May 2017 and will celebrate college-bound students while providing them with information and resources to help them transition to college.

GEAR UP Federal Grant (2014-2021): West Virginia GEAR UP is a federally funded program that helps students in ten counties prepare to succeed in education and training beyond high school. “GEAR UP” stands for “Gaining Early Awareness and Readiness for Undergraduate Programs,” and the program’s goal is to help more students pursue their dreams of earning a college diploma or skillset certificate.

West Virginia GEAR UP is managed by the West Virginia Higher Education Policy Commission (Commission), in collaboration with the West Virginia Community and Technical College System, the West Virginia Department of Education, the West Virginia Department of Education and the Arts and many other community partners. The GEAR
UP program operates on seven-year cycles.

Office of Veterans Education and Training 5 Star Challenge: Last year, the West Virginia Community and Technical College Education System and the West Virginia Higher Education Policy Commission launched a public recognition campaign to encourage public institutions to adopt and implement a set of standards aimed at creating an environment that supports student veterans and accommodates the unique needs of this population.

The campaign, the “5 Star Challenge,” is based on the military tradition of issuing “challenge coins” within military units. Challenge coins are symbolic tokens given to individuals who exemplify the values, goals and culture of the unit.

College Counseling Via Text Message. In 2014, Council staff began a program to provide college counseling and reminders to complete key college tasks via text messaging. In the initial year, the program was limited to those schools served by the GEAR UP program. It is now a statewide offering, providing services and support to more than 11,000 students. Early outcomes indicate that students who received support through text messaging in the project’s first year were more likely to attempt and complete a higher number of college courses and to earn slightly higher grade point averages.